Config4ig
pon -

Maintenance Guide

Version 1.2 30 September 2021

Ciaran McHale

www.configdstar.org

Availability and Copyright

Availability

The Configd* software and its documentation (including this manual)
are available from www.configdstar.org. The manuals are available in
several formats:

e HTML, for online browsing.

e PDF (with hyper links) formatted for A5 paper, for on-screen read-
ing.

e PDF (without hyper links) formatted 2-up for A4 paper, for print-
ing.

Copyright

Copyright (©) 2011-2021 Ciaran McHale (www.CiaranMcHale.com).

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the “Software”),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

e The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

e THE SOFTWARE IS PROVIDED “AS I5”, WITHOUT WAR-
RANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUD-
ING BUT NOT LIMITED TO THE WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE

AND NONINFRINGEMENT. IN NO EVENT SHALL THE AU-
THORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFT-
WARE.

Contents

1 Introduction 1
1.1 The Purpose of the Manual 1
1.2 Structure of this Manual 1

I Architecture of Configd*® 3

2 History 5
2.1 Introduction. oL b)
2.2 Motivation Lo 5
2.3 Development oL 6
24 ChoosingaName 7
2.5 Intertwining Development with Writing of Documentation 7

3 Architectural Overview 9
3.1 Imtroduction 9
3.2 Hiding Implementation Details 9
3.3 Use of Multiple Hash Tables 9
3.4 Why Creation and Parsing are Separate Steps 11
3.5 Limitations o o 12

3.5.1 Number of uid- Entries 12

3.6
3.7

3.8

3.5.2 Lack of File name and Line Number Information . 13
3.5.3 Information lost with round-trip parse() and dump() 15

The Multi-step Build Process 17
Features Implemented with Delegation 18
3.7.1 Fallback Configuration 18
3.7.2 Security Policy, 19
Thread safety 20

4 Portability

4.1
4.2
4.3

Introduction oo o
Compatibility with Old Compilers
Platform-specific Issues

5 Coding Conventions

5.1
5.2
5.3
5.4

Introduction L oL oo
Naming Conventions
Use of a Single Namespace/Package
Indentation and Spacing

6 Parsers and Lexical Analysers

6.1
6.2
6.3
6.4
6.5

Introduction oo o
Avoidance of Parser Generators
Lack of Error Recovery
A Hierarchy of Lexical Analysers
Parsing @if-then-@else statements
6.5.1 A Subtle Problem
6.5.2 An Imperfect Approach to Tackling the Problem .

II Areas for Improvement

7 Missing Components

7.1
7.2
7.3
7.4
7.5

Introduction L oL oo
Cross-platform Build System
Javadoc and Doxygen Documentation
Installation Packages
Regression Test Suite.

8 Rethinking the Architecture

8.1
8.2
8.3
8.4
8.5
8.6

Introduction o oo
Parsing @if-then-@else statements
Location Information in Error Messages
Uid-entries e e
Alternative Schema Validators
Drawback of an Abstract Base Class

ii

21
21
21
22

23
23
23
24
25

27
27
27
28
28
29
29
31

33

35
35
35
35
36
36

9 Other Programming Languages

9.1 Introduction

9.2 Scripting Languages
9.3 Advice for Implementers

10 Internationalisation

10.1 Introduction

10.2 Unicode Concepts and Terminology

10.2.1 Planes and Surrogate Pairs

10.2.2 UCS-2, UTF-8, UTF-16 and UTF-32
10.2.3 Merits of Different Encodings

10.2.4 Transcoding
10.3 Unicode Support in Java
10.4 Unicode Support in C and C++

10.4.1 Limitations in the Standard C Library
10.4.2 Use of Third-party Unicode Libraries.
10.4.3 UTF-8, UTF-16 or UTF-327
10.4.4 Approach Currently Used in ConfigdCpp

11 Localisation
11.1 Introduction

11.2 One Possible Approach for Localisation

Bibliography

iii

43
43
44
44

47
47
47
48
48
49
51
51
53
33
95
56
56

59
59
59

61

iv

Chapter 1

Introduction

1.1 The Purpose of the Manual

This manual is intended primarily for people who want to modify or
maintain the source code of Configd*. For example, if you want to inves-
tigate and fix a bug, add new new functionality, or implement Configd*
in another programming language, then you should consider reading this
manual.

Even if you are not interested in modifying or maintaining Configd*,
you still might find this manual interesting. For example, perhaps you
have wondered about the motivation behind a particular aspect of the
Configd* API. The information provided in this manual might satisfy
such curiosity.

1.2 Structure of this Manual

The chapters in this manual are grouped into two parts.

Part I provides information on the architecture of Configd*. The
chapters in Part I explain not just how Configd* is designed, but also
why it was designed that way. If you spend, say, one hour, reading Part I
of this manual, then that might save you several days of effort in getting
up to speed with the source-code of Configd*.

Part II discusses some of the “rough edges” that exist in Configd*. If
you would like to contribute to Configd*, then reading Part IT may give
you some inspiration on where you could make a good impact.

CHAPTER 1. INTRODUCTION

Part 1

Architecture of Configd™

Chapter 2

History

2.1 Introduction

In this chapter, I provide a brief history of the gestation of Configd*,
from its initial conception to its first public release 14 years later.

2.2 Motivation

In 1996, I did a five-month consultancy assignment in which I helped a
customer design and implement some client-server applications. When
we started the implementation phase, we realised that the applications
would greatly benefit from having a runtime configuration file. Unfor-
tunately, we did not have a configuration parser to hand, and a quick
Internet search did not turn up any suitable ones.

I remember thinking at the time that there must be countless de-
velopers around the world in the same position: they needed to write
a configuration parser for a project, but deadline pressure meant they
could devote no more than, say, a day to writing it, so the resulting parser
would be undocumented, lacking in useful features, possibly buggy, and
unlikely to be reused in future projects. The re-invention of mediocre
configuration parsers by countless developers around the world struck
me as being a massive waste of time. I decided that, once the current
consultancy assignment was finished, I would spend a few weeks, possi-
bly a month, of my spare time writing a good quality C++ configuration
parser.

6 CHAPTER 2. HISTORY

At the time, I was employed in the professional services depart-
ment! of a software vendor, and my employment contract contained
a clause stating that whatever software I wrote—even outside office
hours—belonged to my employer. At the time, my employer developed
proprietary software exclusively (it would be about ten years before my
employer started experimenting with developing open-source software),
so I knew I would not be able to release my configuration parser as
open-source software. This meant that, unfortunately, the wider world
would not be able to benefit from my configuration parser. But at least
my colleagues and I would be able to use it in our future consultancy
assignments.

2.3 Development

Timplemented the configuration parser. As far as I can recall, it provided
only name=value statements (the value could be a string or a list), the
concatenation operator ("+") and scopes. It was certainly a very lim-
ited subset of what Configd* contains today. One or two years later,
a software developer in another department told me that he needed a
configuration parser for a new product that was being developed, and he
asked if he could use my parser. I gave him a snapshot of the source code.
He modified the code to remove the concatenation operator (because it
was unnecessary for his needs) and added some new features (which are
outside the scope of this discussion). That modified configuration parser
made its way into several new products. I mention that in case any
readers are familiar with the Orbix or Artix products from IONA Tech-
nologies (since acquired by Progress Software and later still by Micro
Focus) and recognise some similarities between their configuration file
syntax and that of Configd*.

As Eric Raymond famously wrote in The Cathedral and the Bazaar
[Ray99]:

Every good work of software starts by scratching a devel-
oper’s personal itch.

1For any readers not familiar with the term, professional services basically
means “consultancy and training”. It is not to be confused with personal ser-
vices (a euphemism for prostitution), although the hourly rates are similar. Dis-
turbingly, there appear to be many other similarities between the two professions:
www.thatwasfunny.com/differences-between-consulting-and-prostitution/53.

2.4. CHOOSING A NAME 7

Once the configuration parser was mature enough to scratch my itch, I
stopped work on it and went back to other things. But every few years
I encountered a slightly more stubborn itch that my parser could not
scratch. This resulted in me occasionally adding new functionality to the
parser. Sometimes, I discovered that the parser’s architecture contained
a significant limitation or misfeature, so I redesigned it several times over
the years.

Eventually, my employer started to experiment with developing open-
source software products. Soon after that, my employer agreed to trans-
fer copyright ownership of the configuration parser to me, so that I could
release it under an open-source license. However, I decided to add a few
more features to the C++ implementation, write a Java version, and
write comprehensive documentation before releasing it. I held off writ-
ing the Java version until I (prematurely) thought the C++ version was
feature complete. This was to reduce the amount of work involved in
maintaining two parallel versions.

2.4 Choosing a Name

I had struggled for many years to think of a good name for the configura-
tion parser. However, one day a colleague mentioned the log4j project?
in a conversation; I realised that the name Config/J would be good for a
Java-based parser, and this name could be adapted to provide Config4C,
Config{Cpp, Config4Ada and so on. Hence, the generic name: Config}*,
with the asterisk acting as a wildcard to denote the names of arbitrary
programming languages.

2.5 Intertwining Development with Writing
of Documentation

Years ago, I discovered a time-consuming but effective way to improve
the quality of any software I was developing: write documentation for it.
Writing documentation forces me to explain the various features of the
software. If I find it difficult to explain a particular feature, then that
makes me realise there is something wrong with the feature: perhaps it
is badly designed or needlessly complex. This leads me to work in an
iterative manner. I write the initial version of a piece of software. Then

2http:/ /logging.apache.org/logdj/

8 CHAPTER 2. HISTORY

when I attempt to write documentation, I invariably become aware of
problems in my software’s architecture. Then I fix the problems in the
software before I continue writing the documentation. I tend to cycle
several times—between writing documentation and fixing /enhancing the
software—before the software becomes feature-rich, stable, and easy to
use. This approach has served me well in my own personal projects that
don’t have deadline pressure. I don’t know if such an approach would
work in an environment where time-to-market is critical.

With the benefit of hindsight, I can see that at least half of the fea-
tures in Configd* have come about because of my attempts to write
documentation. So, if you think, “Ciaran did a great job designing Con-
figd*”, and you wonder what is my secret for good design, the answer
is that I do a mediocre design initially, and then slowly improve it by
trying to document it. Of course, I never realise at the time that my
initial design is mediocre. I always naively think that my design is great.
It is only when the design has matured a lot, that I can look back and
think, “Wow, my initial design was flawed in so many ways”.

Chapter 3

Architectural Overview

3.1 Introduction

In this chapter, I explain the main architectural decisions that I made
in Configd*.

3.2 Hiding Implementation Details

The public API of Configd* is defined in the Configuration class. This
is an abstract base class containing very little code. This class provides a
static create() operation that creates an instance of a concrete subclass.
In this way, the implementation details of Configd* are kept separate
from its public API.

The concrete subclass is called ConfigurationImpl. Its most im-
portant instance variable is a hash table. When a ConfigurationImpl
object is created, its hash table is empty initially. The hash table
can then be populated by calling insertString(), insertList() and
ensureScopeExists() directly. Alternatively (and more commonly), you
can call parse(), which, internally, calls those update-style operations.

3.3 Use of Multiple Hash Tables

I know of two potential ways in which a configuration parser might use a
hash table to store name=value pairs. I use the configuration file below
to illustrate the two approaches:

10 CHAPTER 3. ARCHITECTURAL OVERVIEW

foo = "a string";
bar = ["a list", "of", "strings"];
acme {
widget = "another value";
}

The first approach is to use a single hash table to store all the entries.
The entries in this hash table can be represented as follows:

foo — (STRING, “a string”)

bar — (LIST, ["a list", “of”, “string”])

acme — (SCOPE, null)

acme.widget — (STRING, “another string”)

The above notation indicates that each entry in the hash table is a
name — tuple mapping, in which the tuple contains two fields: a type
(STRING, LIST or SCOPE) and a wvalue (if appropriate).

The other approach is to use a separate hash table for each scope.
With this second approach, the hash table for the root scope can be
represented as follows:

foo — (STRING, “a string”)
bar — (LIST, ["a list", “of”, “string”])
acme — (SCOPE, <another-hash-table>)

The hash table for the acme scope contains:
widget — (STRING, “another string”)

When I wrote my first configuration parser, I used the first approach,
that is, a monolithic hash table. I did this for three reasons. First, it
was simpler to implement. Second, it was slightly more memory-efficient.
Finally, it meant that the implementation of a lookup<Type>() operation
required a lookup on just one hash table. In contrast, the “separate hash
table for each scope” approach can require multiple lookups on hash
tables. For example, looking up the value of "acme.widget" requires two
invocations of lookup():

value = rootScopeOfHashTable.lookup("acme).lookup("widget");

Several years later, I added the @copyFrom statement to my configuration
parser and, unfortunately, this introduced a severe performance problem.
When using the “monolithic hash table” approach, the implementation
of @copyFrom has to iterate over the entire contents of the hash table to
find the relevant entries that should be copied. The worst-case scenario
for this is when a configuration file has a scope called, say, defaults, and
many other scopes, each of which contains the following statement:

3.4. WHY CREATION AND PARSING ARE SEPARATE STEPS 11

@copyFrom "defaults";

In such a scenario, parsing the configuration file takes O(N?) time, where
N is the number of entries in the configuration file. That O(N?) per-
formance problem disappears if, instead, a separate hash table is used
for each scope. For that reason, I redesigned Configd* to use a separate
hash table for each scope.

The hash table used by the ConfigurationImpl class is implemented
by the ConfigScope class. The (type, value) tuple used in the above
discussion of hash tables is implemented by the ConfigItem class.

3.4 Why Creation and Parsing are Separate
Steps

With Configd*, parsing of a configuration file is kept separate from the
(initially empty) construction of the Configuration object. For example,
in C++, you write:

cfg = Configuration::create();
cfg->parse("foo.cfg");

Things were not always that way. When I wrote my first configuration
parser, parsing of a configuration file was performed in the constructor.
This resulted in slightly shorter application code:

cfg = Configuration::create("foo.cfg");

Unfortunately, performing parsing in the constructor turned out to
be a source of memory leaks. This is because the parser might encounter
an error in the configuration file and, as a result, throw an exception.
Throwing an exception from (the parser called from within) the construc-
tor means that the object’s destructor is not called, so heap-allocated
instance variables become memory leaks. In theory, all T had to do was
write the constructor as shown below:

ConfigurationImpl::ConfigurationImpl(const char * fileName)
{
. // allocate memory for instance variables
try {
parse(fileName);
} catch(const ConfigurationException & ex) {
. // free memory of instance variables
throw; // re-throw the exception

12 CHAPTER 3. ARCHITECTURAL OVERVIEW

However, on several occasions, as the project matured, memory leaks
crept in due to me adding new heap-allocated instance variables but
forgetting to free them in the above catch clause. Eventually, I grew tired
of that source of recurring memory leaks, and I decided to prevent future
re-occurrences by keeping parsing separate from object construction.

Several years after I made that change, I discovered two extra benefits
of keeping parsing separate from construction. First, it makes it possible
to preset configuration variables. Second, it makes it possible to set a
security policy before parsing a configuration file.

3.5 Limitations

There are very few arbitrary limitations in the implementation of Con-
figd*. For example:

e Aside from available RAM, there is no arbitrary limit on the size
of a configuration file, or the length of lines within a configuration
file.

e There is no arbitrary limit on the length of an identifier (that is,
the name of a scope or variable), on the length of a string value,
or on the maximum number of strings in a list.

e There is no arbitrary limit on the maximum number of nested
@include statements. (However, operating systems typically place
a limit on the number of open file descriptors within a process;
that will limit the number of nested @include statements.)

e There is no arbitrary limit on the number of scopes or how deeply
they can be nested. There is no arbitrary limit on the number of
entries in a scope. The scope’s hash table will resize itself when it
starts to fill up.

I think you get the idea: arbitrary limitations are not common in Con-
figd*. Having said that, Configd* does have some limitations, as I now
discuss.

3.5.1 Number of uid- Entries

There can be no more than 10° uid- entries in a configuration file. That
is an arbitrary limitation, albeit a large one. That limitation arises
because Configd* uses a 32-bit integer to store the uid- counter, and the

3.5. LIMITATIONS 13

maximum value of such an integer is 23! — 1 = 2,147,483,647. That
value is a 10-digit number. I decided to round down the maximum value
of the uid- counter to 999,999, 999 so that the expanded form of an uid-
identifier contains nine digits instead of ten.

How likely is it that a configuration file will exceed the limit on uid-
entries? I don’t think many people will be creating big enough con-
figuration files to have to worry about exceeding this limit within the
next few years (I'm writing this statement in 2011). But the software
and databases that underpin an Internet search engine, such as Google,
might. If you work for such a company and wish to increase this limit,
then you should do the following. Edit the UidIdentifierProcessor
class, change the declaration of the instance variable from being a 32-bit
integer to being a 64-bit one, and modify the code so that when the value
of this instance variable is formatted as a string, the string contains more
than nine digits.

3.5.2 Lack of File name and Line Number Informa-
tion

Consider the following scenario involving two configuration files: foo.cfg
and bar.cfg. The foo.cfg file contains the following:

@include "bar.cfg";
. # define some configuration variables

The bar.cfg file contains the following:

x = "2" # missing semicolon
y = "tru"; # misspelling of "true"

Now let’s consider what happens if we run a program that contains the
following code:

cfg = Configuration.create();

try {
cfg.parse("foo.cfg");
boolean myBool = cfg.lookupBoolean("", "y");

} catch(ConfigurationException ex) {
System.out.println(ex.getMessage());

}

When we run the program, the call to parse() fails because of a syntax
error, and the following message is printed:

14 CHAPTER 3. ARCHITECTURAL OVERVIEW

v Ty

bar.cfg, line 2: expecting or '+’ near 'y

(included from foo.cfg, line 1)

The error message is very informative. Not only does it correctly report
the missing semicolon, it also specifies the location of that problem:
line 2 of file bar.cfg, which was included from line 1 of foo.cfg.

Let’s assume we insert the missing semicolon and run the program
again. Now, parse() succeeds, but the call to lookupBoolean() fails, and
the following message is printed:

foo.cfg: bad boolean value (’'tru’) specified for ’'y’; should be one of:
'false’, "true’

That error message is less informative that the previous one. It correctly
describes the problem, but it does not accurately specify the file name
and line number of the problematic configuration variable. Instead, it
just assumes (inaccurately, in this case) that the problematic variable is
defined somewhere in foo.cfg rather than in an included file.

The lack of accurate location information in this second error message
is due to that information not being recorded in Configd*’s internal hash
tables. That information is not recorded because of a combination of my
laziness and my concern for efficient memory use, as I now explain.

When the Configd* parser encounters a name=value statement or the
opening of a scope, it enters information into the internal hash tables by
calling one of the following operations: insertString(), insertList()
or ensureScopeExists(). The following discussion applies to all those
operations, so, for conciseness, I will discuss just insertString().

The first configuration parser I implemented—the original ances-
tor of Configd*—did not have @include or @copyFrom statements. The
insertString() operation took an extra parameter that indicated the
line number at which the configuration variable was defined:

void insertString(String scope, String name, String value, int lineNum);

That line number was recorded in the hash table entry for the variable.
If an operation, say, lookupBoolean(), could not translate a variable’s
value into the appropriate type, then the text message in the exception
thrown could specify the line number (obtained from the entry in the
hash table) and the file name (obtained by calling cfg.fileName()) of the
problematic variable. This approach worked well, and it had minimal
memory overhead: just a 4-byte integer (to store the line number) for
each entry in a hash table.

Several years later, I added the @include statement. I realised that
if error messages were to specify accurate location information, then it

3.5. LIMITATIONS 15

would no longer be sufficient to pass a line number to insertString().
That operation would have to be modified to take a parameter that spec-
ified a list of (fileName, lineNumber) tuples, as shown in the following
pseudocode:

void insertString(String scope, String name, String value,
List[(fileName, lineNum)] locationInformation);

That list of tuples could be stored in the hash table entry for a variable.
Then an error message produced by, say, lookupBoolean() could indi-
cate the file name and line number of the problematic variable, plus the
path, if any, that traces the @include statements from the main config-
uration file to the file that contains the problematic variable. (Ideally,
the path would trace not just @include statements, but also @copyFrom
statements.)

Implementing that enhancement could result in a significant memory
overhead. For example, let’s assume there are 100 variables defined in
bar.cfg, which is included from foo.cfg. Would the enhancement result
in there being 100 copies of the string "bar.cfg" and another 100 copies
of "foo.cfg"—separate copies for each entry in the hash table? Avoiding
such redundant copies would require the implementation of a pool of
unique strings, which would add complexity to the implementation of
Configd*.

Would such memory overhead and/or complexity be a worthwhile
investment to obtain more informative error messages? I don’t know. So
far, I have found it straightforward to search through a file (and included
files, if any) in a text editor to find a problematic variable. But then, I
have been dealing mainly with configuration files that contain only a few
hundred or few thousands lines of text. Perhaps, in a few years time,
somebody will be working with configuration files that contain millions
of lines of text, a complex interaction of deeply nested and re-opened
scopes, all compounded with @include and @copyFrom statements. In
such a scenario, accurate location information in error messages might
improve ergonomics significantly.

3.5.3 Information lost with round-trip parse() and
dump ()

If you parse() a configuration file and dump() it back out again, then

you do not get back the full contents of the original configuration file.
As first sight, this might appear to be a limitation of the dump()

operation. However, that view is inaccurate. To better understand the

16 CHAPTER 3. ARCHITECTURAL OVERVIEW

issues involved, consider a configuration file that contains the following
statement:

log_dir = getenv("FOO_HOME") + "/logs/" + exec("hostname");

The Configd* parser evaluates the expression and stores the result in the
hash table for the configuration scope. For example, if FOO_HOME has the
value "/opt/foo" and hostname returns "hostl", then the hash table will
contain the following entry:

log_dir — (STRING, “/opt/foo/logs/host1”)

The dump() operation simply dumps the contents of the hash table, and
thus produces:

log_dir = "/opt/foo/logs/hostl";

So, the limitation is not actually with the dump() operation, since it
is faithfully reproducing the contents of the hash table. Instead, the
limitation is with the parser and hash table representation, because they
record a processed (rather than the original) version of what was in the
input configuration file.

You might think this limitation would be easy to overcome: just
have the hash table store the original expression rather than the result
of evaluating the expression. However, such an approach would suffer
from two significant problems.

The first problem is an increased performance overhead. This is
because the overhead of evaluating the expression would not be incurred
exactly once, when parsing the input file. Instead, the overhead would
be incurred every time a lookup<Type>() operation is invoked (which
might be multiple times in an application).

The second problem is that the internal architecture of Configd*
would have to be redesigned completely to enable dump() to reproduce
the input configuration file exactly. In particular, something more com-
plex than a hash table would be required to store the parsed information.
This is because:

e A hash table does not preserve the order in which entries were
added to it, but such an order-preservation guarantee would be
required for dump() to reproduce the input file accurately.

e The parser discards comments when parsing the input file. These
would have to be preserved in the internal representation for dump ()
to be able to reproduce the input file accurately.

3.6. THE MULTI-STEP BUILD PROCESS 17

In addition, it is difficult to see how an efficient internal representation
might preserve commands such as @include, @copyFrom, @remove, @if-
then-@else, and conditional assignment ("?=") statements rather than
just the name=value pairs resulting from executing those commands.

In summary, it would require a significant amount of rework to the
architecture of Configd* to be able to implement a dump() operation that
could reproduce the input configuration file accurately. In my opinion,
the benefits would not justify the amount of work involved.

The preceding discussion invites a question: Why did I implement a
dump () operation that reproduces the input configuration file so inaccu-
rately? The answer is that my original intention in implementing dump ()
was to provide a debugging tool: the output of dump() helped me to
check that I had implemented the hash table-based internal representa-
tion correctly. It was only later that I realised dump () might be useful for
other purposes too, such as converting, say, an XML file into Configd*
format, or storing the user preferences of a GUI-based application.

3.6 The Multi-step Build Process

Some software projects have a straightforward build system: compile
all the source-code files, and then combine them to form a library, ex-
ecutable or jar file. Some other software projects require a multi-step
build system, for example:

1. Compile a subset of the source-code files to produce a utility pro-
gram, such as a code generator.

2. Run that utility program to generate additional source-code files.

3. Compile the newly generated files plus the remaining source-code
files, and combine them to form a library, executable or jar file.

ConfigdCpp requires that type of multi-step build system. This is due
to the default security policy, which must be embedded within the Con-
figdCpp library.

The first step of the build system is to compile a few source-code files
to produce a simplified version of config2cpp called config2cpp-nocheck.
In a moment, I will explain how and why this “no check” version of the
utility is simplified. But before that, I will discuss the remaining steps
of the build system.

18 CHAPTER 3. ARCHITECTURAL OVERVIEW

The second step of the build system is to run the newly compiled
utility on the DefaultSecurity.cfg file to produce a C++ class called
DefaultSecurity.

The third step of the build system is to compile this newly generated
class plus the remaining source-code files, and combine them to form a
library and executable.

The (non-simplified) config2cpp cannot be used in step 2 of the build
system because it makes use of the ConfigdCpp library, which is not
built until step 3 of the build system. (In particular, it is the schema-
generation functionality of the utility that makes use of the ConfigdCpp
library.)

The (simplified) config2cpp-nocheck utility does not contain any
schema-generation functionality. This simplification means it avoids any
dependency on the ConfigdCpp library. This simplified utility is used
only by the build system: it is not copied into the bin directory for use
by regular users of Configd*.

Originally, ConfigdJ used a similar multi-step build process. How-
ever, Version 1.2 of Config4J introduced support for strings of the form
"classpath#path/to/file.cfg" that can be passed as a parameter to
the Configuration.parse() operation. This Java-specific enhancement
means that the DefaultSecurity.cfg file can now be found by search-
ing for it on the classpath (which is guaranteed to work since the file is
embedded as a resource file in config4j.jar). In turn, this means that
ConfigdJ can now make use of a simpler, single-step build system: just
compile all .java files and create config4j.jar.

3.7 Features Implemented with Delegation

Two important pieces of functionality (fallback configuration and secu-
rity policies) are implemented by having the user-created Configuration
object delegate to another, but internal, Configuration object. In this
section, I briefly explain how the delegation works.

3.7.1 Fallback Configuration

One of the instance variables in the ConfigurationImpl class is a C++
pointer or Java reference to another ConfigurationImpl object. In Con-
figdJ, this instance variable is called fallbackCfg, while in ConfigdCpp it
is called m_fallbackConfig. (In general, ConfigdCpp uses "m_" as a prefix
on the names of member, that is, instance, variables.) The constructor

3.7. FEATURES IMPLEMENTED WITH DELEGATION 19

initialises this instance variable to be a C++ nil pointer or Java null
reference. The setFallbackConfiguration() operation sets it to point to
another Configuration object.

The Configuration class defines many type-specific lookup opera-
tions, such as lookupList(), lookupString() and lookupBoolean(). The
implementations of those operations, either directly or indirectly, invoke
a more primitive operation called lookup(), which looks for the desired
entry in the hash tables. If lookup() finds the entry, then it returns a
pointer /reference to the relevant hash table’s ConfigItem; otherwise, it
continues the search by delegating to the fallback configuration object.
This can be seen in the abridged pseudocode algorithm shown below:

ConfigItem lookup(String fullyScopedName, String localName, ...)
{
ConfigItem item;
item = ...; // search for fullyScopedName in the hash tables
if (item == null && fallbackCfg != null) {
item = fallbackCfg.lookup(localName, localName, ...);
}

return item;

3.7.2 Security Policy

The enforcement of Configd*’s security policy relies on the interaction
between three items: (1) a singleton object representing the default se-
curity policy; (2) two instance variables in the ConfigurationImpl class;
and (3) an operation called isExecAllowed(). I will discuss each of those
in turn.

In Section 3.6 on page 17, I explained how the build system embeds
a DefaultSecurity.cfg file into the Configd* library. That embedded
configuration file provides the default security policy. A class called
DefaultSecurityConfiguration: (1) inherits from ConfigurationImpl;
(2) uses its constructor to parse the embedded DefaultSecurity config-
uration file; and (3) provides a singleton object. That singleton object
is the default security policy used by all Configuration objects.

The ConfigurationImpl class contains two instance variables that are
used to implement the security policy:

// Java instance variables
Configuration securityCfg;
String securityCfgScope;

20 CHAPTER 3. ARCHITECTURAL OVERVIEW

// C++ instance variables
Configuration * m_securityCfg;
StringBuffer m_securityCfgScope;

The ConfigurationImpl constructor initializes the (m_)securityCfg vari-
able to point to the DefaultSecurityConfiguration singleton object, and
initialises (m_)securityCfgScope to be an empty string (denoting the root
scope). A programmer can update those instance variables by calling the
setSecurityConfiguration() operation.

Recall that there are three ways Configd* can execute an external
command:

cfg.parse("exec#command") ;
@include "exec#command";
name = exec("command");

Whenever Configd* is asked to execute an external command, it calls
isExecAllowed() to determine if the security policy in effect allows the
specified command to be executed. That operation makes its decision
by comparing details of the specified command to the allow_patterns,
deny_patterns and trusted_directories variables that appear in the
(m_)securityCfgScope scope of the (m_)securityCfg configuration object.

3.8 Thread safety

Implementations of Configd* are not thread safe. The lack of thread
safety was a deliberate design decision, and was based on two consider-
ations.

First, some programming languages do not provide portable synchro-
nisation facilities. Thus, avoiding reliance on such facilities helps to keep
the architecture of Configd* portable across programming languages.

Second, all the operations in the API of Configd* fall into one of two
categories: either they are query operations such as lookup<Type>(),
or they are update operations such as parse(), ensureScopeExists(),
insert<Type>(), remove() and empty(). I imagine that most multi-
threaded, Configd*-based applications will use a single thread to call one
or more update operations to initialise a Configuration object. Once
initialisation is complete, the Configuration object can then be made
available to other threads within the application, but those threads will
invoke only query operations on it. It is safe for multiple threads to
invoke query operations concurrently.

Chapter 4

Portability

4.1 Introduction

Many people consider a piece of software to be portable if it can be built
with different brand names of compiler on different operating systems.
I think that is an overly narrow view of portability. In my opinion, the
portability of software is increased if the software refrains from using the
most recently introduced features of a programming language, because
that means the software is portable to both new and older versions of a
programming language.

4.2 Compatibility with Old Compilers

During the 15 years I spent working in the professional services depart-
ment of a software vendor, I visited many companies who were slow to
upgrade software that they were using. An example of how slow some
companies are to upgrade is provided by Microsoft. Microsoft released
version 6.0 of the Visual Studio C++ compiler in 1998. In 2010, some de-
velopers are still using that version of the compiler, despite the fact that
Microsoft have brought out five major newer releases in the intervening
12 years.

When implementing ConfigdCpp and ConfigdJ, I decided to avoid
using relatively new language features whenever possible. By “relatively
new”, I mean less than 5 or 10 years old. My intention is that ConfigdCpp
and Configd]J can be used not just with the latest versions of compilers,

21

22 CHAPTER 4. PORTABILITY

but with older compilers too.

For ConfigdJ, this means that annotations, generics and enumera-
tions (all introduced in Java 5) have been avoided. I also decided to
avoid using the assert keyword (introduced in Java 1.4); instead I wrote
the Util.assertion() operation to provide similar functionality.

For ConfigdCpp, I have been happy to use exceptions, namespaces,
and single inheritance, but I avoided static_cast<>, multiple inheri-
tance, template types and the standard C++ library (instead I rely only
on the standard C library). Further discussion of this is given in the
Config4* C++ API Guide.

4.3 Platform-specific Issues

In general, portability of Java code is better than portability of C++
code. This has resulted in ConfigdJ containing very little platform-
dependent code. In fact, the only non-trivial platform-dependent code is
in the implementation of getenv() in the ConfigurationImpl class. You
can find a discussion of this in comments in the code.

In ConfigdCpp, I have encapsulated platform-specific code in the files
platform.h and platform.cpp. Interested readers should look at the com-
ments in those files to see the approach taken to dealing with platform-
specific issues.

Chapter 5

Coding Conventions

5.1 Introduction

This chapter discusses conventions used in the source code of Configd]
and ConfigdCpp.

5.2 Naming Conventions

Most identifiers in ConfigdJ and ConfigdCpp are spelled using mixed
capitalisation without any underscores—what is sometimes called “camel
case” convention. Class names begin with an upper-case letter (for exam-
ple, LexToken), while the names of operations and variables begin with
a lower-case letter (for example, lookupString()). Named constants are
spelled in all upper-case with underscores (for example, CFG_SCOPE, which
is defined in the Configuration class).

The naming conventions discussed above should be familiar to most
Java programmers. Those naming conventions are less widely used
among C++ programmers, where some people prefer identifier names
to consist of lower-case letters and underscores instead of camel case.
I decided to use the Java naming convention in ConfigdCpp to provide
consistency in the public API and, to a lesser extent, implementation
code.

Some minor differences in the naming conventions arise with regard to
what C++ programmers call an instance (or member) variable, and what
Java programmers call a field. In ConfigdCpp, I use "m_" as a prefix on

23

24 CHAPTER 5. CODING CONVENTIONS

the names of such variables because that convention is deeply ingrained
in my memory muscles. I do not use any such prefix in Configd]J. If
such a variable has a public accessor operation, then this is given a
"get" prefix in ConfigdJ, but not in ConfigdCpp. For example, a C++
instance variable called m_foo might have an accessor operation called
foo(), while the Java counterparts are called foo and getFoo().

Java requires that the name of a source-code file match the name
of the class contained in it. For example, the file Foo.java contains a
class called Foo. C++ does not have this same requirement, but the
source-code of ConfigdCpp uses that naming convention.

5.3 Use of a Single Namespace/Package

All the source code of ConfigdCpp is in a single namespace. The de-
fault name of this is config4cpp, but you can change that by editing the
<config4cpp/namespace.h> file. Likewise, all the source code of ConfigdJ
is in a single package. The name of this is org.config4j, but you should
be able to change the package name easily by doing a global search-and-
replace on the source-code files. Alternatively, an integrated develop-
ment environment (IDE) might provide a “refactoring” menu option to
change the package name.

Putting all the source code into a single namespace/package was done
deliberately to help companies avoid a potential versioning link problem,
as I now explain.

Let’s assume your company makes and sells a software library called
Foo. Internally, Foo uses version p.q of ConfigdCpp. One of your cus-
tomers is trying to build an application that links with both the Foo
library and also the Bar library (which is sold by another company).
The Bar library also uses ConfigdCpp internally, but, unfortunately, it
uses the newer version x.y. If versions p.q and x.y of ConfigdCpp are not
binary compatible, then you are likely to receive technical support calls
from your customer, asking you to urgently upgrade to the x.y version
of ConfigdCpp, so the customer can build their application without link
errors.

You can avoid the need to deal with such technical support requests
if you take two steps when implementing the Foo library. First, change
the namespace of ConfigdCpp when compiling it for use inside the Foo
library. Second, if the Foo library needs to expose a configuration API to
users of Foo, then do not expose the ConfigdCpp API directly. Instead,

5.4. INDENTATION AND SPACING 25

look at the source code of some of the demo programs (discussed in the
Config4 * Getting Started Guide) to see how you can put a Foo “wrapper”
APT around the ConfigdCpp API. If you take those two simple steps, then
your customers will not encounter the linking problems discussed above.

There is, unfortunately, a price to be paid for the above advice:
code bloat. In particular, your customer’s application will end up being
linked with several copies of ConfigdCpp (each compiled in a different
namespace). At the time of writing, each copy of the ConfigdCpp library
will add a few hundred KB to an application. However, I think such
code bloat is an acceptable price to pay when when modern computers
have several GB of RAM.

5.4 Indentation and Spacing

Indentation in source-code files is with TAB characters. Please configure
your text editor or integrated development environment (IDE) so that a
TAB character displays as 4 spaces.' Lines of source code should never
be more than 80 columns wide.

Please do not put spaces around " (" or ")" characters when invoking
a function. Also, the opening "{" in an if-then-else statement, while-loop
or for-loop should not be on a separate line (unless you need to avoid
line wrap).

obj.someOp (parameter); // bad

obj.someOP(parameter); // good
if (someCondition) // bad
{
}
if (someCondition) { // good
}

LIf you use the vim text editor, then the following information may be useful. By
default, vim treats a TAB character as 8 spaces. You can override this for C++ and
Java files by placing the following line into the .vimrc file in the directory specified
by the HOME environment variable:

autocmd FileType cpp,java setlocal tabstop=4 shiftwidth=4

26

CHAPTER 5. CODING CONVENTIONS

Chapter 6

Parsers and Lexical
Analysers

6.1 Introduction

In this chapter, I discuss the approach taken to implement the parsers
and lexical analysers that are used in Configd*.

6.2 Avoidance of Parser Generators

There are many tools available that can generate a lexical analyser or
parser. However, I decided to write those parts of Configd* by hand. I
did this for two reasons.

First, when I was an undergraduate student at university, I learned
how to use the UNIX tools lex (for generating a lexical analyser) and
yacc (for generating a parser). But I also learned how to write a lexical
analyser and recursive-descent parser by hand. I prefer the hand-written
approach, at least for small grammars.

Second, one of my hopes is that people will volunteer to implement
Configd* in other programming languages. It should be straightforward
to port a hand-written lexical analyser and parser to another (object-
oriented or procedural) programming language. This is because those
components are implemented with just “normal code”, so the port from
C++ to, say, Ada would be just a port of “normal code”.

27

28 CHAPTER 6. PARSERS AND LEXICAL ANALYSERS

In contrast, if I had used, say, lex and yacc in the C++ implemen-
tation, and you wanted to implement an Ada version, then you would
have had to do the following.

1. Find lex- and yacc-like tools for Ada.

2. Translate the lex and yacc files into the syntax required for their
counterparts in Ada. Doing this would probably require you to
learn how to use lex and yacc and their Ada counterparts.

3. If there is not a one-to-one match of features in lex and yacc, and
their Ada counterparts, then you would have to to figure out how
to emulate some of the lex and yacc functionality in their Ada
counterparts. If you did this incorrectly, then you might introduce
subtle bugs in the lexical analyser or parser.

The above steps would introduce complexity that does not exist with a
hand-written lexical analyser and parser.

6.3 Lack of Error Recovery

The parsers in many compilers implement error recovery. This means
that when the parser encounters an error, it reports the error and then
tries to recover by skipping input until the parser encounters, say, the
next semicolon (indicating the end of a statement) or close brace (indi-
cating the end of a scope). Having recovered, the parser can examine the
rest of the input file to check if it contains any additional errors. Error
recovery enables a single run of a compiler to report several errors. This
can speed up software development, especially if the compiler is slow.
To keep the Configd* parser simple, it does not make any attempt
to do error recovery. Instead, when the parser encounters an error, it
reports the error and stops immediately. The lack of error recovery
simplifies the design of the Configd* parser. And because the parser is
extremely fast, I do not feel it is particularly burdensome for a user to
fix one error at a time and then attempt to re-parse a configuration file.

6.4 A Hierar