
Config4
C++ API Guide

Version 1.1 2 February 2012

Ciaran McHale

www.con�g4star.org

http://www.config4star.org

Availability and Copyright

Availability

The Con�g4* software and its documentation (including this manual)
are available from www.con�g4star.org. The manuals are available in
several formats:

� HTML, for online browsing.

� PDF (with hyper links) formatted for A5 paper, for on-screen read-
ing.

� PDF (without hyper links) formatted 2-up for A4 paper, for print-
ing.

Copyright

Copyright © 2011 Ciaran McHale (www.CiaranMcHale.com).

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation �les (the �Software�),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

� The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

� THE SOFTWARE IS PROVIDED �AS IS�, WITHOUT WAR-
RANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUD-
ING BUT NOT LIMITED TO THE WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE

http://www.config4star.org
http://www.CiaranMcHale.com

AND NONINFRINGEMENT. IN NO EVENT SHALL THE AU-
THORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTIONWITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFT-
WARE.

Contents

1 Introduction 1

1.1 Purpose of this Manual 1
1.2 Namespace . 1
1.3 Memory management . 1
1.4 Portability . 2
1.5 Error Reporting . 3
1.6 Specifying Scoped Names 3
1.7 Support Classes . 4

1.7.1 The StringBuffer Class 4
1.7.2 The StringVector Class 6

2 The Configuration Class 9

2.1 The ConfigurationException Class 9
2.2 The create() and destroy() Operations 10
2.3 Utility Operations . 11
2.4 The parse(), fileName() and empty() Operations 12

2.4.1 Parsing a File . 14
2.4.2 Parsing the Output of a Command 14
2.4.3 Parsing a String 15
2.4.4 The Simpli�ed Version of parse() 15
2.4.5 Parsing Multiple Files and the empty() Operation 16

2.5 Insertion and Removal Operations 17
2.6 The lookup<Type>() Operations 19

2.6.1 Lookup Operations for Enumerated Types 19
2.6.2 Lookup Operations for Unit-based Types 26

2.7 The type() and is<Type>() Operations 26
2.8 The stringTo<Type>() Operations 28
2.9 The List Operations . 31

i

2.10 Operations for Fallback Con�guration 34
2.11 Operations for Security Con�guration 35
2.12 Operations for the "uid-" Pre�x 36
2.13 The dump() Operation . 37

3 The SchemaValidator and SchemaType Classes 39

3.1 The SchemaValidator Class 39
3.1.1 Public Operations 39
3.1.2 Using registerType() in a Subclass 41

3.2 The SchemaType Class . 41
3.2.1 Constructor and Public Accessors 42
3.2.2 The checkRule() Operation 42
3.2.3 The isA() and validate() Operations 47

3.2.3.1 String-based Types: isA() 47
3.2.3.2 List-based Types: validate() 47

3.3 Adding Utility Operations to a Schema Type 49

ii

Chapter 1

Introduction

1.1 Purpose of this Manual

This manual provides a reference for the application programming inter-
face (API) of Con�g4Cpp. This manual does not provide a beginner's
tutorial on Con�g4Cpp. You can �nd such a tutorial in the Con�g4*

Getting Started Guide.
The rest of this chapter discusses the principles that underpin the

API of Con�g4Cpp. Knowledge of these principles makes it easier to
understand the API. The chapters that follow discuss the API of indi-
vidual classes.

1.2 Namespace

All the classes of Con�g4Cpp are de�ned in the config4cpp namespace.
For conciseness, the config4cpp:: namespace pre�x is not explicitly
stated in the discussion of classes and operations in this manual.

1.3 Memory management

The API is designed so that ownership of heap-allocated memory is not
transferred from Con�g4Cpp to application code, or vice versa. For
example, if an application calls lookupString(), the application should
not delete the returned string when it is �nished processing it. There
are two motivations behind this memory management policy.

1

2 CHAPTER 1. INTRODUCTION

The �rst motivation is to simplify the API and, in doing so, minimize
the chances of memory leaks in applications that use Con�g4Cpp.

The second motivation comes from the Microsoft Visual C++ com-
piler. This compiler does something unusual: it implements the new

and delete operators with one algorithm if you compile in debug mode,
but implements those operators with an incompatible, algorithm if you
compile in release (that is, non-debug) mode. If an application contains
some �les that were compiled in debug mode and other �les that were
compiled in release mode, then the application might crash if memory
allocated with the debug version of new is freed using the release version
of delete, or vice versa. Typically, this problem occurs when application
code is compiled in, say, debug mode, but is linked against a third-party
library that was compiled in release mode. Many vendors of third-party
libraries work around this problem by supplying both debug and release
versions of their libraries. The Con�g4Cpp library takes a di�erent ap-
proach to avoiding mismatched versions of new and delete. Put simply,
any memory allocated inside Con�g4Cpp is later freed from inside Con-
�g4Cpp. By doing this, it is not necessary to compile both debug and
release versions of the Con�g4Cpp library.

1.4 Portability

One of the design goals of Con�g4Cpp is portability. Not only should
Con�g4Cpp compile on many operating systems; it should also compile
with both new and older C++ compilers. Some older C++ compilers
do not fully support the standard C++ library. Because of this, the
implementation of Con�g4Cpp does not use anything in the standard
C++ library. This has some knock-on e�ects, as I now discuss.

First, the implementation of Con�g4Cpp does not use the IO streams
library to read a con�guration �le. This is because using IO streams
means using either classic IO streams (that is, <iostream.h>), or stan-
dard IO streams (that is, <iostream>). In many compilers, these are not
link compatible so if your application uses classic IO streams, then you
cannot link your application with a third-party library that uses stan-
dard IO streams. It would have been possible for Con�g4Cpp to use
conditional compilation to let a person compiling Con�g4Cpp specify if
it should use classic or standard IO streams. However, it turns out to be
just as easy for Con�g4Cpp to use <stdio.h> in the standard C library
to read con�guration �les, and so bypass unpleasant issues associated

1.5. ERROR REPORTING 3

with the choice between classic or standard IO streams.
Second, the implementation of Con�g4Cpp does not use any types

in the standard template library (STL). Nor does Con�g4Cpp de�ne
any template types itself. One reason for this is to avoid the portabil-
ity headache of dealing with platform-speci�c build issues when using
template types. Another reason is that some projects wishing to use
Con�g4Cpp might be using a relatively old C++ compiler that does not
support template types. The amount of code in Con�g4Cpp could have
been reduced by making use of std::string, std::vector and std::map.
However, for the sake of portability, the Con�g4Cpp library implements
its own utility classes that implement similar functionality.

Most of the external APIs used by the implementation of Con�g4Cpp
are functions in the standard C library, which is much more portable
than the C++ library. However, it has not been possible to write Con-
�g4Cpp entirely using only portable APIs: a few platform-speci�c APIs
have been required too; these are discussed in the Con�g4* Maintenance

Guide.

1.5 Error Reporting

The Con�g4Cpp parser does not make any attempt at error recovery.
Instead, it stops at the �rst error it encounters, and reports the error
by throwing an exception. The lack of error recovery helps to keep the
implementation of the parser simple. It also simpli�es the public API
because the ability to report multiple parsing errors would have required
a more complex API.

1.6 Specifying Scoped Names

Many of the operations in Con�g4Cpp work with scoped names, for ex-
ample, foo_srv.log.dir. Typically, the �rst part, foo_srv, is a scope for
a particular application, and the remainder, log.dir, is a con�guration
variable used by that application. It can be useful to change the applica-
tion name (foo_srv) without needing to change lots of code. It would not
be possible to do this if foo_srv.log.dir appeared in application code.
Instead, it is best for the two parts of a name to be speci�ed separately,
and then merged to form the fully-scoped name.

It would be tedious for developers to do such merging manually. To
avoid this, the Con�g4Cpp operations that work on scoped names take

4 CHAPTER 1. INTRODUCTION

two string parameters. Internally, the operations merge the strings to
obtain a fully-scoped name. For example, you can access the value of
foo_srv.log.dir with the following statement:

logDir = cfg->lookupString("foo_srv", "log.dir");

The intention is that an application can declare a variable called, say,
scope and initialize its value from a command-line argument. Then the
application can access con�guration information from within that scope
by using code like that shown below:

logDir = cfg.lookupString(scope, "log.dir");

By rerunning an application with a di�erent command-line argument,
you can change the scope used to con�gure the application. This provides
a lot of �exibility. For example, you might have one con�guration scope
for running an application without debugging diagnostics, and another
scope that enables debugging diagnostics. Alternatively, you might have
a separate scope for each instance of a replicated server application.

1.7 Support Classes

I explained in Section 1.4 on page 2 that, to increase its portability,
Con�g4Cpp avoids use of template types, including those in the standard
C++ library. Instead, Con�g4Cpp implements two support classes that
provide functionality somewhat similar to that provided by some classes
in the standard C++ library.

1.7.1 The StringBuffer Class

Instead of using the std::string and std::stringstream classes, Con-
�g4Cpp de�nes its own StringBuffer class that provides similar-ish func-
tionality. The public API of this class is shown in Figure 1.1.

The default constructor initialises the StringBuffer to maintain an
empty C-style string (""). The constructor taking a const char* param-
eter takes a deep copy of that parameter. Likewise, the copy constructor
makes a deep copy of the string contained inside its parameter.

You can grow the C-style string inside a StringBuffer by calling the
overloaded append() operation or by using the overloaded << operator.

You can replace the C-style string contained in a StringBuffer by
using the overloaded assignment operator ("=").

1.7. SUPPORT CLASSES 5

Figure 1.1: The StringBuffer class

// Access with #include <config4cpp/StringBuffer.h>

// or #include <config4cpp/Configuration.h>

class StringBuffer

{

public:

StringBuffer();

StringBuffer(const char * str); // deep copy

StringBuffer(const StringBuffer &); // deep copy

~StringBuffer();

const char * c_str() const;

char lastChar() const;

int length() const;

void empty();

void deleteLastChar();

StringBuffer & append(const StringBuffer & other); // deep copy

StringBuffer & append(const char * str); // deep copy

StringBuffer & append(int val);

StringBuffer & append(float val);

StringBuffer & append(char ch);

StringBuffer & operator=(const char * str); // deep copy

StringBuffer & operator=(const StringBuffer & other); // deep copy

char operator[](int index) const;

char & operator[](int index);

StringBuffer & operator<<(const StringBuffer & other);// deep copy

StringBuffer & operator<<(const char * str); // deep copy

StringBuffer & operator<<(int val);

StringBuffer & operator<<(float val);

StringBuffer & operator<<(char ch);

};

The c_str() operation returns a pointer to the C-style string con-
tained inside the StringBuffer.

The empty() operation resets the StringBuffer to having an empty
C-style string.

The length() operation returns the length of the C-style string con-
tained inside the StringBuffer.

The lastChar() operation returns the �nal (non-null) character of the
C-style string contained in the StringBuffer if the string is not empty;

6 CHAPTER 1. INTRODUCTION

otherwise, it returns ’\0’.
The deleteLastChar() operation removes the last character from the

C-style string contained in the StringBuffer. It is an error to call this
operation on an empty StringBuffer.

The StringBuffer class is used mainly by the internals of Con�g4Cpp.
However, StringBuffer is exposed to application programmers via pa-
rameters to a small number of public operations. In such cases, it is
always used as an �out� or �in-out� parameter, so that application code
does not have to explicitly delete a heap-allocated string allocated by
the internals of Con�g4Cpp.

1.7.2 The StringVector Class

Con�g4Cpp de�nes its own StringVector class that provides function-
ality similar-ish to that provided by std::vector<std::string>. The
public API of StringVector is shown in Figure 1.2.

The StringVector class provides a simpli�cation wrapper around a
null-terminated array of C-style strings. The default constructor ini-
tialises the StringVector to maintain an empty, null-terminated array.
The copy constructor makes a deep copy of all the C-style strings in the
parameter.

Strings are added to a StringVector by calling the overloaded add()

operation, which grows the internal array of the StringVector if neces-
sary. If you know in advance how many strings you will add, then you
can invoke ensureCapacity() to prevent repeated re-allocations of the
internal array.

The c_array() operation provides access to the internal array of C-
style strings. The returned array is always null-terminated. This op-
eration is overloaded to provide access to the null-terminated array of
strings with and without a count of the number of strings in the array.

The length() operation returns the number of C-style strings cur-
rently in the array. You can use operator[] to get read-only access to
individual items of the array, and call replace() to replace an individual
item.

The removeLast() operation removes the string at the end of the
array, while empty() resets the StringVector back to being an empty,
null-terminated array.

The sort() operation uses strcmp() as its comparison function to
sort the strings in the array.

The bSearchContains() operation performs a binary search (using

1.7. SUPPORT CLASSES 7

Figure 1.2: The StringVector class

// Access with #include <config4cpp/StringVector.h>

// or #include <config4cpp/Configuration.h>

class StringVector

{

public:

StringVector(int initialCapacity = 10);

StringVector(const StringVector &); // deep copy

~StringVector();

void ensureCapacity(int size);

void add(const char * str);

void add(const StringBuffer & strBuf);

void add(const StringVector & other); // adds all items

void c_array(const char**& array, int& arraySize) const;

const char ** c_array() const;

int length() const;

const char * operator[](int index) const;

StringVector & operator=(const StringVector & other); // deep copy

void replace(int index, const char * str); // deep copy

void removeLast();

void empty();

void sort();

bool bSearchContains(const char * str) const;

};

strcmp() as its comparison function) on the array of strings, which are
assumed to be sorted. If the target string is found, then this operation
returns true; otherwise, it returns false.

The StringVector class is used mainly by the internals of Con�g4Cpp.
However, StringVector is exposed to application programmers via pa-
rameters to some public operations, such as lookupList(), insertList(),
listFullyScopedNames() and listLocallyScopedNames().

8 CHAPTER 1. INTRODUCTION

Chapter 2

The Configuration Class

2.1 The ConfigurationException Class

An exception of type ConfigurationException is thrown if any Con-
�g4Cpp operation fails. The public API of this class is shown in Fig-
ure 2.1.

Figure 2.1: The ConfigurationException class

// Access with #include <config4cpp/ConfigurationException.h>

// or #include <config4cpp/Configuration.h>

class ConfigurationException

{

public:

ConfigurationException(const char * str);

ConfigurationException(const ConfigurationException & other);

~ConfigurationException();

const char * c_str() const;

};

Application code can access a string description of the exception by
invoking the c_str() operation, as shown below:

try { ... } catch(const ConfigurationException & ex) {

cerr << ex.c_str() << endl;

}

9

10 CHAPTER 2. THE CONFIGURATION CLASS

As explained in Section 1.4 on page 2, to avoid having a dependency on
either classic or standard IO streams, Con�g4Cpp is not implemented
with the IO Stream library. Because of this, Con�g4Cpp does not de-
�ne an operator for streaming a ConfigurationException to an output
stream. There is nothing preventing you from de�ning such a streaming
operator in the global scope in your own applications. Alternatively, you
can stream an exception to an output stream by explicitly invoking the
c_str() operation, as shown in the previous example.

2.2 The create() and destroy() Operations

Figure 2.2 shows the operations that are used to create and destroy a
Configuration object.

Figure 2.2: Initialization and destruction APIs for Configuration

// Access with #include <config4cpp/Configuration.h>

class Configuration {

public:

static Configuration * create();

virtual void destroy();

...

};

You use the static create() operation to create a Configuration ob-
ject. A newly created Configuration object is empty initially. You can
then populate it and access its contents, as I will discuss in the following
sections of this chapter. Finally, you should call destroy() to reclaim
the memory of the Configuration object.

The correct behaviour of Con�g4Cpp depends on the locale being set
correctly. Because of this, it is advisable to call setlocale() before invok-
ing any Con�g4Cpp APIs. If you do this, then Con�g4Cpp will be able
to handle characters de�ned in your locale, such as European accented
characters or Japanese ideographs. If you neglect to call setlocale(),
then Con�g4Cpp is likely to correctly process only characters in the 7-bit
US ASCII character set. Figure 2.3 illustrates how to call setlocale(),
create() and destroy().

Most of the operations de�ned in the Configuration class can throw
ConfigurationException exceptions, so those operations should be called

2.3. UTILITY OPERATIONS 11

Figure 2.3: Example of creating and destroying a Configuration object

#include <locale.h>

#include <config4cpp/Configuration.h>

using namespace config4cpp;

...

setlocale(LC_ALL, "");

Configuration * cfg = Configuration::create();

try {

... // invoke operations on cfg

} catch(const ConfigurationException & ex) {

cout << ex.c_str() << endl;

}

cfg->destroy();

from inside a try-catch clause. However, the create() and destroy()

operations do not throw that exception, so, as shown in Figure 2.3, they
can be called from outside a try-catch clause.

2.3 Utility Operations

Con�g4Cpp provides several utility operations, shown in Figure 2.4, that
you may need to use from time to time.

Figure 2.4: Utility operations

class Configuration {

public:

static void mergeNames(const char * scope,

const char * localName,

StringBuffer & fullyScopedName);

static bool patternMatch(const char * str,

const char * pattern);

static int mbstrlen(const char * str);

...

};

As I discussed in Section 1.6 on page 3, many Con�g4* operations
take a pair of parameters, scope and localName, that, when merged,
specify the fully-scoped name of an entry in a Configuration object. The
mergeNames() operation performs that merging, and it puts the result
into the fullyScopedName parameter. The fully-scoped name is usually

12 CHAPTER 2. THE CONFIGURATION CLASS

of the form scope.localName, but if either scope or localName is an empty
string, then the dot (".") is omitted when performing the merge.

The patternMatch() operation compares a string against a pattern,
and returns true if they match. Within the pattern, the "*" character
acts as a wildcard that matches zero or more characters. For example:

Configuration::patternMatch("Hello, world", "Hello*") → true

Configuration::patternMatch("Hello, world", "123*89") → false

Your locale setting speci�es, amongst other things, the character set
being used. If the locale speci�es an 8-bit character set, such as ASCII
or ISO-Latin-1, then each character is fully encoded in a single byte.
However, if the locale speci�es a multi-byte character set, such as UTF-
8, then some characters may be encoded in a single byte but other
characters will be encoded in a multi-byte sequence. Because of this
possibility, you cannot rely on using the strlen() function to return the
number of characters (instead of bytes) in a string. The mbstrlen()

operation returns the number of characters in a string, regardless of the
character set speci�ed by the locale setting; it returns -1 if the string
contains invalid multi-byte characters.

2.4 The parse(), fileName() and empty() Op-

erations

Figure 2.5 shows the signatures of the fileName(), parse() and empty()

operations.
The fileName() operation returns the name of the most recently

parsed �le. If parse() has not previously been called, then fileName()

returns an empty string.
I defer discussion of the one-parameter version of parse() until Sec-

tion 2.4.4 on page 15 because it is just a simpli�ed version of the three-
parameter version of parse(). In the three-parameter version of parse(),
the value of the �rst parameter determines the meaning of the other pa-
rameters.

� If the �rst parameter is INPUT_FILE, then the second parameter
is the name of the �le to be parsed, and the third parameter is
ignored.

The second parameter will be the value returned from future calls
to fileName().

2.4. THE PARSE(), FILENAME() AND EMPTY() OPERATIONS 13

Figure 2.5: The parse(), fileName() and empty() operations

class Configuration {

public:

enum SourceType {INPUT_FILE, INPUT_STRING, INPUT_EXEC};

const char * fileName() const;

void parse(Configuration::SourceType sourceType,

const char * source,

const char * sourceDescription = "")

throw(ConfigurationException);

void parse(const char * sourceTypeAndSource)

throw(ConfigurationException);

void empty();

...

};

� If the �rst parameter is INPUT_STRING, then the second parameter
is a string to be parsed.

If the third parameter is not an empty string, then it will be the
value returned from future calls to fileName(); otherwise the string
"<string-based configuration>" will be the value returned from
future calls to fileName().

� If the �rst parameter is INPUT_EXEC, then the second parameter is
an external command to be executed and whose standard output
is to be parsed.

If the third parameter is not an empty string, then it will be the
value returned from future calls to fileName(); otherwise the string
resulting from appending the second parameter to "exec#" will be
the value returned from future calls to fileName().

The string returned from fileName() is used at the start of text mes-
sages inside exceptions. For example, many components of Con�g4Cpp
(including the parser, schema validator and lookup operations) format
exception messages as shown below:

if (...) {

StringBuffer msg;

msg << cfg->fileName() << ": something went wrong";

throw ConfigurationException(msg.c_str());

14 CHAPTER 2. THE CONFIGURATION CLASS

}

For this reason, if you call parse() with INPUT_STRING for the �rst pa-
rameter, then you should ensure that the value of the third parameter
acts as a descriptive ��le name�.

2.4.1 Parsing a File

The code segment in Figure 2.6 shows an example use of parse(). The
create() operation creates a Configuration object that is empty initially.
Then the parse() operation is used to populate the Configuration ob-
ject. A try-catch clause is used to print any exception that might be
thrown. Once the Configuration object has been populated, lookup
operations (which I will discuss in Section 2.6) can be used to access
information in it. Finally, destroy() is called to reclaim the memory of
the Configuration object when it is no longer required.

Figure 2.6: An example of using parse()

Configuration * cfg = Configuration::create();

try {

cfg->parse(Configuration::INPUT_FILE, "myFile.cfg");

... // invoke lookup operations

} catch(const ConfigurationException & ex) {

cerr << ex.c_str() << endl;

}

cfg->destroy();

2.4.2 Parsing the Output of a Command

The example in Figure 2.6 used the following to parse a �le:

cfg->parse(Configuration::INPUT_FILE, "myFile.cfg");

If, instead of parsing a �le, you want to execute a command and parse
its standard output, then you can do so as follows:

cfg->parse(Configuration::INPUT_EXEC, "curl -sS http://host/file.cfg");

Using INPUT_EXEC for the �rst parameter tells parse() to to interpret the
second parameter as the name of a command to be executed.

2.4. THE PARSE(), FILENAME() AND EMPTY() OPERATIONS 15

2.4.3 Parsing a String

The example in Figure 2.6 used the following to parse a �le:

cfg->parse(Configuration::INPUT_FILE, "myFile.cfg");

If, instead of parsing a �le, you want to parse a string, then you can do
so as follows:

const char * cfgStr = ...;

cfg->parse(Configuration::INPUT_STRING, cfgStr, "embedded configuration");

Using INPUT_STRING for the �rst parameter tells parse() to interpret the
second parameter as con�guration data that should be parsed directly,
and the third parameter is the ��le name� that will be used when report-
ing errors. You can initialise the second parameter in a variety of ways,
for example:

� You could use the config2cpp utility to convert a con�guration �le
into (a class wrapper around) a string that is embedded into the
application. In this case, you might use "embedded configuration"

or "fallback configuration" as the third parameter.

� Perhaps you are developing a client-server application that se-
rialises messages into Con�g4* syntax and then transmits them
across a socket connection. In the receiving application, the sec-
ond parameter to parse() would be a message that was read from a
socket connection. In this case, you might use "incoming message"

as the third parameter.

2.4.4 The Simpli�ed Version of parse()

The one-parameter version of parse() is a simpli�cation wrapper around
the three-parameter version. Its implementation is shown in Figure 2.7.

The following examples show how to use this simpli�ed version:

cfg->parse("exec#curl -sS http://host/file.cfg");

cfg->parse("file#file.cfg");

cfg->parse("file.cfg");

In practice, the parameter to this operation is unlikely to be hard-coded
into an application, but rather will come from, say, a command-line
option or an environment variable.

16 CHAPTER 2. THE CONFIGURATION CLASS

Figure 2.7: Simpli�ed version of parse()

void

Configuration::parse(const char * str) throw(ConfigurationException)

{

if (strncmp(str, "exec#", 5) == 0) {

parse(Configuration::INPUT_EXEC, &(str[5]));

} else if (strncmp(str, "file#", 5) == 0) {

parse(Configuration::INPUT_FILE, &(str[5]));

} else {

parse(Configuration::INPUT_FILE, str);

}

}

2.4.5 Parsing Multiple Files and the empty() Opera-

tion

If you want to parse multiple con�guration �les, then you can use multi-
ple Configuration objects. Alternatively, you can reuse the same object
multiple times. If you do this, then you will probably want to call empty()
between successive calls of parse(), as shown in Figure 2.8. The empty()
operation has the e�ect of removing all variables and scopes from the
Configuration object.

Figure 2.8: Calling parse() and empty() multiple times

Configuration * cfg = Configuration::create();

try {

cfg->parse("file1.cfg");

... // Access the configuration information

cfg->empty();

cfg->parse("file2.cfg");

... // Access the configuration information

cfg->empty();

cfg->parse("file3.cfg");

... // Access the configuration information

cfg->empty();

cfg->parse("file4.cfg");

... // Access the configuration information

} catch(const ConfigurationException & ex) {

cerr << ex.c_str() << endl;

}

cfg->destroy();

2.5. INSERTION AND REMOVAL OPERATIONS 17

It is legal to call parse() multiple times without calling empty() be-
tween successive calls. If you do this, then each call to parse() merges its
information with information already in the Configuration object. The
Con�g4* parser implements the @include statement by (recursively) call-
ing parse(), so you can think of multiple calls to parse() without calls
to empty() as being similar to multiple @include statements.

It is di�cult to think of a compelling reason why you might want to
use a single Configuration object to parse multiple con�guration �les
without calling empty() between successive calls of parse(). However, it
is useful to know what the semantics of doing so are, because it can help
you understand what is happening if you forget to call empty() between
calls to parse() on the same Configuration object.

2.5 Insertion and Removal Operations

Most applications will populate a Configuration object by parsing a
con�guration �le. However, it is possible to populate a Configuration

object by using the operations shown in Figure 2.9.

The insertString() operation inserts into the Configuration object
an entry using the fully-scoped name (obtained by merging the scope

and localName parameters) and the speci�ed strValue. If a variable of
the same name already exists in the Configuration object, then it is
replaced with the new value.

The insertList() operation inserts into the Configuration object an
entry using the fully-scoped name (obtained by merging the scope and
localName parameters) and the speci�ed list. If a variable of the same
name already exists in the Configuration object then it is replaced with
the new value. The insertList() operation is overloaded so you can
specify the list in one of three di�erent ways: as an array of strings plus
the size of the array, as an array of strings terminated by a null pointer,
or as a StringVector.

The insertString() and insertList() operations make a deep copy
of the value when inserting it into the Configuration object.

The ensureScopeExists() operation merges the scope and localName

parameters to obtain a fully-scoped name. It ensures that a scope with
this fully-scoped name exists. If any ancestors of the speci�ed scopes
are missing, then they are also created. Internally, the insertString()

and insertList() operations call ensureScopeExists(). Because of this,
applications rarely need to call ensureScopeExists() directly.

18 CHAPTER 2. THE CONFIGURATION CLASS

Figure 2.9: Insertion and removal operations

class Configuration {

public:

void insertString(

const char * scope,

const char * localName,

const char * strValue)

throw(ConfigurationException);

void insertList(

const char * scope,

const char * localName,

const char ** array,

int arraySize)

throw(ConfigurationException);

void insertList(

const char * scope,

const char * localName,

const char ** nullTerminatedArray)

throw(ConfigurationException);

void insertList(

const char * scope,

const char * localName,

const StringVector & vec)

throw(ConfigurationException);

void ensureScopeExists(

const char * scope,

const char * localName)

throw(ConfigurationException);

void remove(const char * scope, const char * localName)

throw(ConfigurationException);

...

};

The remove() operation merges scope and localName to form a fully-
scoped name. It then removes the entry with the speci�ed name.

If you are making use of identi�ers that have "uid-" pre�xes, then
it is your duty to expand such identi�ers before invoking any of the
operations listed in Figure 2.9. Section 2.12 on page 36 explains how to
expand identi�ers that have "uid-" pre�xes.

2.6. THE LOOKUP<TYPE>() OPERATIONS 19

2.6 The lookup<Type>() Operations

Figure 2.10 lists lookup-style operations that you can use to access the
values of con�guration variables. There are a lot of lookup operations,
for the following reasons.

� Syntactically, variables in a con�guration �le are either strings or
lists. However, strings are often used to encode other types, such
as integers, �oats, booleans, durations and so on. Because of this,
there are type-safe lookup operations that convert a string value to
another format. For example, lookupInt() converts a string value
to an int, and lookupBoolean() converts a string value to a bool.

� The lookup operations are overloaded so that you can optionally
specify a default value that should be returned if the speci�ed
con�guration variable is not present.

� The lookupList() operation is overloaded so you can access a list
as an array of strings or a StringVector.

The lookup operations perform error checking. For example, if the
lookupInt() operation cannot convert the string value into an integer,
then it throws an exception that contains an easy-to-understand error
message. Likewise, if you do not specify a default value to a lookup op-
eration and the speci�ed con�guration variable is missing (from both the
main con�guration object and fallback con�guration), then an exception
is thrown.

2.6.1 Lookup Operations for Enumerated Types

Among other parameters, the lookupEnum() operation takes an array of
EnumNameAndValue structures and the size of that array. This operation
calls lookupString() and then uses information in the array to convert
the string value into an integer. For example:

EnumNameAndValue colourInfo[] = {

{ "red", 0 },

{ "green", 1 },

{ "blue", 2 },

};

colour = cfg->lookupEnum(scope, "font_colour", "colour", colourInfo, 3);

The typeName parameter ("colour" in the above example) speci�es the
�type name� of the enum names, and is used to construct an informative
error message if an exception is thrown.

20 CHAPTER 2. THE CONFIGURATION CLASS

Figure 2.10: The lookup<Type>() operations

struct EnumNameAndValue {

const char * name;

int value;

};

class Configuration

{

public:

const char * lookupString(

const char * scope,

const char * localName,

const char * defaultVal) const

throw(ConfigurationException);

const char * lookupString(

const char * scope,

const char * localName) const

throw(ConfigurationException);

void lookupList(

const char * scope,

const char * localName,

const char **& array,

int & arraySize,

const char ** defaultArray,

int defaultArraySize) const

throw(ConfigurationException);

void lookupList(

const char * scope,

const char * localName,

const char **& array,

int & arraySize) const

throw(ConfigurationException);

void lookupList(

const char * scope,

const char * localName,

StringVector & list,

const StringVector & defaultList) const

throw(ConfigurationException);

... continued on the next page

2.6. THE LOOKUP<TYPE>() OPERATIONS 21

Figure 2.10 (continued): The lookup<Type>() operations

... continued from the previous page

void lookupList(

const char * scope,

const char * localName,

StringVector & list) const

throw(ConfigurationException);

int lookupInt(

const char * scope,

const char * localName,

int defaultVal) const

throw(ConfigurationException);

int lookupInt(

const char * scope,

const char * localName) const

throw(ConfigurationException);

float lookupFloat(

const char * scope,

const char * localName,

float defaultVal) const

throw(ConfigurationException);

float lookupFloat(

const char * scope,

const char * localName) const

throw(ConfigurationException);

int lookupEnum(

const char * scope,

const char * localName,

const char * typeName,

const EnumNameAndValue * enumInfo,

int numEnums,

const char * defaultVal) const

throw(ConfigurationException);

int lookupEnum(

const char * scope,

const char * localName,

const char * typeName,

const EnumNameAndValue * enumInfo,

int numEnums,

int defaultVal) const

throw(ConfigurationException);

... continued on the next page

22 CHAPTER 2. THE CONFIGURATION CLASS

Figure 2.10 (continued): The lookup<Type>() operations

... continued from the previous page

int lookupEnum(

const char * scope,

const char * localName,

const char * typeName,

const EnumNameAndValue * enumInfo,

int numEnums) const

throw(ConfigurationException);

bool lookupBoolean(

const char * scope,

const char * localName,

bool defaultVal) const

throw(ConfigurationException);

bool lookupBoolean(

const char * scope,

const char * localName) const

throw(ConfigurationException);

void lookupFloatWithUnits(

const char * scope,

const char * localName,

const char * typeName,

const char ** allowedUnits,

int allowedUnitsSize,

float & floatResult,

const char *& unitsResult) const

throw(ConfigurationException);

void lookupFloatWithUnits(

const char * scope,

const char * localName,

const char * typeName,

const char ** allowedUnits,

int allowedUnitsSize,

float & floatResult,

const char *& unitsResult,

float defaultFloat,

const char * defaultUnits) const

throw(ConfigurationException);

... continued on the next page

2.6. THE LOOKUP<TYPE>() OPERATIONS 23

Figure 2.10 (continued): The lookup<Type>() operations

... continued from the previous page

void lookupUnitsWithFloat(

const char * scope,

const char * localName,

const char * typeName,

const char ** allowedUnits,

int allowedUnitsSize,

float & floatResult,

const char *& unitsResult) const

throw(ConfigurationException);

void lookupUnitsWithFloat(

const char * scope,

const char * localName,

const char * typeName,

const char ** allowedUnits,

int allowedUnitsSize,

float & floatResult,

const char *& unitsResult,

float defaultFloat,

const char * defaultUnits) const

throw(ConfigurationException);

void lookupIntWithUnits(

const char * scope,

const char * localName,

const char * typeName,

const char ** allowedUnits,

int allowedUnitsSize,

int & intResult,

const char *& unitsResult) const

throw(ConfigurationException);

void lookupIntWithUnits(

const char * scope,

const char * localName,

const char * typeName,

const char ** allowedUnits,

int allowedUnitsSize,

int & intResult,

const char *& unitsResult,

int defaultInt,

const char * defaultUnits) const

throw(ConfigurationException);

... continued on the next page

24 CHAPTER 2. THE CONFIGURATION CLASS

Figure 2.10 (continued): The lookup<Type>() operations

... continued from the previous page

void lookupUnitsWithInt(

const char * scope,

const char * localName,

const char * typeName,

const char ** allowedUnits,

int allowedUnitsSize,

int & intResult,

const char *& unitsResult) const

throw(ConfigurationException);

void lookupUnitsWithInt(

const char * scope,

const char * localName,

const char * typeName,

const char ** allowedUnits,

int allowedUnitsSize,

int & intResult,

const char *& unitsResult,

int defaultInt,

const char * defaultUnits) const

throw(ConfigurationException);

int lookupDurationMicroseconds(

const char * scope,

const char * localName,

int defaultVal) const

throw(ConfigurationException);

int lookupDurationMicroseconds(

const char * scope,

const char * localName) const

throw(ConfigurationException);

int lookupDurationMilliseconds(

const char * scope,

const char * localName,

int defaultVal) const

throw(ConfigurationException);

int lookupDurationMilliseconds(

const char * scope,

const char * localName) const

throw(ConfigurationException);

... continued on the next page

2.6. THE LOOKUP<TYPE>() OPERATIONS 25

Figure 2.10 (continued): The lookup<Type>() operations

... continued from the previous page

int lookupDurationSeconds(

const char * scope,

const char * localName,

int defaultVal) const

throw(ConfigurationException);

int lookupDurationSeconds(

const char * scope,

const char * localName) const

throw(ConfigurationException);

int lookupMemorySizeBytes(

const char * scope,

const char * localName,

int defaultVal) const

throw(ConfigurationException);

int lookupMemorySizeBytes(

const char * scope,

const char * localName) const

throw(ConfigurationException);

int lookupMemorySizeKB(

const char * scope,

const char * localName,

int defaultVal) const

throw(ConfigurationException);

int lookupMemorySizeKB(

const char * scope,

const char * localName) const

throw(ConfigurationException);

int lookupMemorySizeMB(

const char * scope,

const char * localName,

int defaultVal) const

throw(ConfigurationException);

int lookupMemorySizeMB(

const char * scope,

const char * localName) const

throw(ConfigurationException);

void lookupScope(

const char * scope,

const char * localName) const

throw(ConfigurationException);

};

26 CHAPTER 2. THE CONFIGURATION CLASS

2.6.2 Lookup Operations for Unit-based Types

Lookup operations that have Units in their name take, among other
parameters, an array of strings (specifying the allowed units) and the
size of that array. An example can be seen in Figure 2.11.

Figure 2.11: Example invocation of lookupUnitsWithFloat

float amount;

const char * currency;

const char * currencies[] = {"£", "$", "€"};

cfg->lookupUnitsWithFloat(scope, "discount_price", "price",

currencies, 3, amount, currency);

The typeName parameter ("price" in the example) speci�es the �type
name� of correctly-formatted strings, and is used to construct an infor-
mative error message if an exception is thrown.

The output parameters, amount and currency, contain the quantity
and units that were parsed from the value of the con�guration variable.

2.7 The type() and is<Type>() Operations

Figure 2.12 shows the operations you can use to query type information.

The type() operation merges the scope and localName parameters to
form the fully-scoped name of an entry in the Configuration object, and
then returns the type of that entry. The return value of this operation
will be one of the following:

Return value Meaning

Configuration::CFG_NO_VALUE The entry does not exist
Configuration::CFG_STRING The entry is a string variable
Configuration::CFG_LIST The entry is a list variable
Configuration::CFG_SCOPE The entry is a scope

Operations with names of the form is<Type>() return true if the str
parameter is of the speci�ed type. For example:

cfg->isBoolean("true") → true

cfg->isBoolean("Fred") → false

cfg->isDurationSeconds("2.5 minutes") → true

cfg->isDurationSeconds("100 milliseconds") → false

2.7. THE TYPE() AND IS<TYPE>() OPERATIONS 27

Figure 2.12: The type() and is<Type>() operations

struct EnumNameAndValue { const char * name; int value; };

class Configuration {

public:

enum Type {CFG_NO_VALUE = 0, // bit masks

CFG_STRING = 1, // 0001

CFG_LIST = 2, // 0010

CFG_SCOPE = 4, // 0100

CFG_VARIABLES = 3, // 0011 = STRING | LIST

CFG_SCOPE_AND_VARS = 7 // 0111 = STRING | LIST | SCOPE

};

Type type(const char * scope, const char * localName) const;

bool isBoolean(const char * str) const;

bool isInt(const char * str) const;

bool isFloat(const char * str) const;

bool isDurationMicroseconds(const char * str) const;

bool isDurationMilliseconds(const char * str) const;

bool isDurationSeconds(const char * str) const;

bool isMemorySizeBytes(const char * str) const;

bool isMemorySizeKB(const char * str) const;

bool isMemorySizeMB(const char * str) const;

bool isEnum(const char * str,

const EnumNameAndValue * enumInfo,

int numEnums) const;

bool isFloatWithUnits(

const char * str,

const char ** allowedUnits,

int allowedUnitsSize) const;

bool isIntWithUnits(

const char * str,

const char ** allowedUnits,

int allowedUnitsSize) const;

bool isUnitsWithFloat(

const char * str,

const char ** allowedUnits,

int allowedUnitsSize) const;

bool isUnitsWithInt(

const char * str,

const char ** allowedUnits,

int allowedUnitsSize) const;

...

};

28 CHAPTER 2. THE CONFIGURATION CLASS

The isEnum() operation takes three parameters: a string to be tested,
an array of EnumNameAndValue structures and the size of that array. For
example:

EnumNameAndValue colourInfo[] = {

{ "red", 0 },

{ "green", 1 },

{ "blue", 2 },

};

cfg->isEnum("red", colourInfo, 3) → true

cfg->isEnum("foo", colourInfo, 3) → false

The is<Type>() operations with "Units" in their name take three param-
eters: a string to be tested, an array of strings (specifying the allowed
units) and the size of that array. For example:

const char * currencies[] = {"£", "$", "€"};

cfg->isUnitsWithFloat("£19.99", currencies, 3) → true

cfg->isUnitsWithFloat("foobar", currencies, 3) → false

2.8 The stringTo<Type>() Operations

Figure 2.13 lists operations that can convert a string value to another
type.

An operation with a name of the form stringTo<Type>() converts a
string into the speci�ed type. If the conversion fails, then the operation
throws an exception containing an informative error message. The error
message will indicate that the problem arose with the variable identi�ed
by the fully-scoped name (obtained by merging the scope and localName

parameters) in the fileName() con�guration �le.
As an example, consider a call to stringToInt() in which the scope

parameter is "foo", the localName parameter is "my_list[3]" and the str
parameter is "Hello, world". If the con�guration �le previously parsed
was called example.cfg, then the message in the exception will be:

example.cfg: Non-integer value for ’foo.my_list[3]’

The intention is that developers will iterate over all the strings within a
list and handcraft the localName parameter for each list element to re�ect
its position within the list: "my_list[1]", "my_list[2]", "my_list[3]"
and so on. In this way, the stringTo<Type>() operations can produce
informative exception messages if a data-type conversion fails. Note that
although many programming languages, including C++, index arrays

2.8. THE STRINGTO<TYPE>() OPERATIONS 29

Figure 2.13: The stringTo<Type>() operations

class Configuration {

public:

bool stringToBoolean(

const char * scope,

const char * localName,

const char * str) const

throw(ConfigurationException);

int stringToInt(

const char * scope,

const char * localName,

const char * str) const

throw(ConfigurationException);

float stringToFloat(

const char * scope,

const char * localName,

const char * str) const

throw(ConfigurationException);

int stringToDurationSeconds(

const char * scope,

const char * localName,

const char * str) const

throw(ConfigurationException);

int stringToDurationMilliseconds(

const char * scope,

const char * localName,

const char * str) const

throw(ConfigurationException);

int stringToDurationMicroseconds(

const char * scope,

const char * localName,

const char * str) const

throw(ConfigurationException);

int stringToMemorySizeBytes(

const char * scope,

const char * localName,

const char * str) const

throw(ConfigurationException);

... continued on the next page

30 CHAPTER 2. THE CONFIGURATION CLASS

Figure 2.13 (continued): The stringTo<Type>() operations

... continued from the previous page

int stringToMemorySizeKB(

const char * scope,

const char * localName,

const char * str) const

throw(ConfigurationException);

int stringToMemorySizeMB(

const char * scope,

const char * localName,

const char * str) const

throw(ConfigurationException);

int stringToEnum(

const char * scope,

const char * localName,

const char * typeName,

const char * str,

const EnumNameAndValue * enumInfo,

int numEnums) const

throw(ConfigurationException);

void stringToFloatWithUnits(

const char * scope,

const char * localName,

const char * typeName,

const char * str,

const char ** allowedUnits,

int allowedUnitsSize,

float & floatResult,

const char *& unitsResult) const

throw(ConfigurationException);

void stringToUnitsWithFloat(

const char * scope,

const char * localName,

const char * typeName,

const char * str,

const char ** allowedUnits,

int allowedUnitsSize,

float & floatResult,

const char *& unitsResult) const

throw(ConfigurationException);

... continued on the next page

2.9. THE LIST OPERATIONS 31

Figure 2.13 (continued): The stringTo<Type>() operations

... continued from the previous page

void stringToIntWithUnits(

const char * scope,

const char * localName,

const char * typeName,

const char * str,

const char ** allowedUnits,

int allowedUnitsSize,

int & intResult,

const char *& unitsResult) const

throw(ConfigurationException);

void stringToUnitsWithInt(

const char * scope,

const char * localName,

const char * typeName,

const char * str,

const char ** allowedUnits,

int allowedUnitsSize,

int & intResult,

const char *& unitsResult) const

throw(ConfigurationException);

...

};

starting from 0, you should format the localName parameter so the index
starts at 1. This is to be consistent with the error messages produced
by the SchemaValidator class.

2.9 The List Operations

Figure 2.14 shows the operations for listing the names of entries within a
scope. There are two list-type operations: listFullyScopedNames() and
listLocallyScopedNames(). However, there are three overloaded versions
of each operation, thus making for six variants in total.

The list operations merge the scope and localName parameters to
form the fully-scoped name of a scope, and populate the output names

parameter with a sorted list of the names of entries in that scope. The
boolean recursive parameter speci�es whether the list operation should
recurse into nested sub-scopes. The typeMask parameter is a bit mask
that speci�es which types of entries should be listed. For example, speci-

32 CHAPTER 2. THE CONFIGURATION CLASS

Figure 2.14: The list operations

class Configuration {

public:

enum Type {CFG_NO_VALUE = 0, // bit masks

CFG_STRING = 1, // 0001

CFG_LIST = 2, // 0010

CFG_SCOPE = 4, // 0100

CFG_VARIABLES = 3, // 0011 = STRING | LIST

CFG_SCOPE_AND_VARS = 7 // 0111 = STRING | LIST | SCOPE

};

void listFullyScopedNames(

const char * scope,

const char * localName,

Type typeMask,

bool recursive,

StringVector & names) const

throw(ConfigurationException);

void listFullyScopedNames(

const char * scope,

const char * localName,

Type typeMask,

bool recursive,

const char * filterPattern,

StringVector & names) const

throw(ConfigurationException);

void listFullyScopedNames(

const char * scope,

const char * localName,

Type typeMask,

bool recursive,

const StringVector & filterPatterns,

StringVector & names) const

throw(ConfigurationException);

void listLocallyScopedNames(

const char * scope,

const char * localName,

Type typeMask,

bool recursive,

StringVector & names) const

throw(ConfigurationException);

... continued on the next page

2.9. THE LIST OPERATIONS 33

Figure 2.14 (continued): The list operations

... continued from the previous page

void listLocallyScopedNames(

const char * scope,

const char * localName,

Type typeMask,

bool recursive,

const char * filterPattern,

StringVector & names) const

throw(ConfigurationException);

void listLocallyScopedNames(

const char * scope,

const char * localName,

Type typeMask,

bool recursive,

const StringVector & filterPatterns,

StringVector & names) const

throw(ConfigurationException);

...

};

fying CFG_VARIABLES will list only the names of variables, while CFG_SCOPE
will list only the names of scopes.

By default, a list operation lists the names of all the speci�ed entries.
However, if one or more �lter patterns are speci�ed, then the list oper-
ation will use the patternMatch() operation (Section 2.3 on page 11) to
compare each name against the speci�ed patterns, and only names that
match at least one �lter pattern will be included in the list results.

As an example of the list functions, consider the con�guration �le
shown below:

foo {

timeout = "2 minutes";

log {

level = "2";

file = "/tmp/foo.log";

};

}

The following invocation of listFullyScopedNames():

cfg->listFullyScopedNames("foo", "", Configuration::CFG_SCOPE_AND_VARS,

true, names);

results in names containing the following strings:

34 CHAPTER 2. THE CONFIGURATION CLASS

"foo.log"

"foo.log.level"

"foo.log.file"

"foo.timeout"

If the same parameters are passed to listLocallyScopedNames(), then
names will contain similar strings, but each string will be missing the
"foo." pre�x.

If you intend to make use of �lter patterns, then you should note that
�lter patterns are matched against the strings that are produced by the
list operation. For example, the �lter pattern "time*" matches against
"timeout", which is produced by listLocallyScopedNames() in the pre-
vious example, but it does not match against "foo.timeout", which is
produced by listFullyScopedNames(). Because of this, you should use
mergeNames() (Section 2.3 on page 11) to pre�x �lter patterns with the
name of the scope being listed when using listFullyScopedNames(). This
is illustrated in the following example:

StringBuffer filterPattern;

Configuration::mergeNames(scope, "time*", filterPattern);

cfg->listFullyScopedNames(scope, "", Configuration::CFG_SCOPE_AND_VARS,

true, filterPattern, names);

The list operations call unexpandUid()�discussed in Section 2.12 on
page 36�on a name before comparing it against �lter patterns. Be-
cause of this, �lter patterns can work with names that have an "uid-"
pre�x. For example, the code below obtains a list of the names of all
uid-recipe scopes:

StringBuffer filterPattern;

Configuration::mergeNames(scope, "uid-recipe", filterPattern);

cfg->listFullyScopedNames(scope, "", Configuration::CFG_SCOPE,

true, filterPattern, names);

2.10 Operations for Fallback Con�guration

The operations for getting and setting fallback con�guration are shown
in Figure 2.15.

The one-parameter version of setFallbackConfiguration() requires
you to create and populate the fallback con�guration object yourself.
The three-parameter version creates an initially empty fallback con�gu-
ration object and then populates it by calling parse() with the speci�ed
parameters.

2.11. OPERATIONS FOR SECURITY CONFIGURATION 35

Figure 2.15: Operations for Fallback Con�guration

class Configuration {

public:

void setFallbackConfiguration(Configuration * cfg);

void setFallbackConfiguration(

Configuration::SourceType sourceType,

const char * source,

const char * sourceDescription = "")

throw(ConfigurationException);

const Configuration * getFallbackConfiguration();

...

};

A �main� con�guration object takes ownership of its fallback con�gu-
ration object. Because of this, when you invoke destroy() on the �main�
con�guration object, its fallback con�guration object is also destroyed.

2.11 Operations for Security Con�guration

As explained in the Con�g4* Security chapter of the Con�g4* Getting

Started Guide, Con�g4* has a built-in security policy that is applied to
all Configuration objects by default. You can query the current security
policy of a Configuration object by calling getSecurityConfiguration(),
which is shown in Figure 2.16.

You can change the security policy of an individual Configuration
object by calling setSecurityConfiguration(). This operation is over-
loaded. The �rst variant shown in Figure 2.16 enables you to use an
existing Configuration object as a security policy. If takeOwnership is
true, then the target Configuration object will �take ownership� of the
security policy object, which means the security policy object will be
destroyed when the target Configuration object is destroyed.

The second variant of setSecurityConfiguration enables you to spec-
ify a �le or "exec#..." that should be parsed to obtain a security policy.
The target Configuration object will �take ownership� of the security
policy object.

The security policy is speci�ed by the combination of three vari-
ables (allow_patterns, deny_patterns and trusted_directories) in the
speci�ed scope of the security policy object. See the Con�g4* Security

chapter of the Con�g4* Getting Started Guide for details.

36 CHAPTER 2. THE CONFIGURATION CLASS

Figure 2.16: Operations for Security Con�guration

class Configuration {

public:

void setSecurityConfiguration(

Configuration * cfg,

bool takeOwnership,

const char * scope = "")

throw(ConfigurationException);

void setSecurityConfiguration(

const char * cfgInput,

const char * scope = "")

throw(ConfigurationException);

void getSecurityConfiguration(

const Configuration *& cfg,

const char *& scope);

...

};

2.12 Operations for the "uid-" Pre�x

An identi�er that has an "uid-" pre�x has both an expanded and unex-

panded form. For example, uid-000000042-recipe is an identi�er in its
expanded form, while uid-recipe is its unexpanded counterpart. Fig-
ure 2.17 lists the operations that Con�g4Cpp provides for manipulating
expanded and unexpanded uid identi�ers.

Figure 2.17: Operations for the "uid-" pre�x

class Configuration {

public:

void expandUid(StringBuffer & spelling)

throw(ConfigurationException);

const char * unexpandUid(

const char * spelling,

StringBuffer & buf) const;

bool uidEquals(const char * s1, const char * s2) const;

...

};

Each Configuration object keeps an internal counter that starts at 0
and is incremented every time expandUid() encounters an "uid-" pre�x.
The current value of that counter is used by expandUid() to replace an

2.13. THE DUMP() OPERATION 37

identi�er with its expanded form.

If you populate a Configuration object by calling parse(), then you
are unlikely to need to call expandUid(), because the parser invokes that
operation automatically whenever it encounters an identi�er with an
"uid-" pre�x.

However, if you populate a Configuration object by invoking the in-
sertion operations discussed in Section 2.5 on page 17, then it is your
responsibility to expand identi�ers before invoking the insertion opera-
tions.

The uidEquals() operation calls unexpandUid() for both of its pa-
rameters, and tests the resulting names for equality. For example:

cfg->uidEquals("uid-000000042-recipe", "uid-recipe") → true

cfg->uidEquals("uid-000000042-recipe", "uid-employee") → false

2.13 The dump() Operation

When Con�g4Cpp parses a con�guration �le, it stores information about
scopes and name=value pairs in hash tables. Con�g4Cpp provides a
dump() operation, shown in Figure 2.18, that converts information in the
hash tables into the syntax of a Con�g4* �le; this result is stored in the
buf parameter.

Figure 2.18: The dump() operation

class Configuration {

public:

void dump(StringBuffer & buf,

bool wantExpandedUidNames,

const char * scope,

const char * localName) const

throw(ConfigurationException);

void dump(StringBuffer & buf, bool wantExpandedUidNames) const;

...

};

The dump() operation is overloaded. The version that takes scope

and localName parameters merges those parameters to form the fully-
scoped name of an entry, and then provides a dump of that entry. This
version of dump() will throw an exception if the fully-scoped name is of
an non-existent entry.

38 CHAPTER 2. THE CONFIGURATION CLASS

The other version of the operation dumps the entire Configuration

object.
Both versions of the dump() operation take a boolean parameter,

wantExpandedUidNames, that speci�es whether entries that have an "uid-"

pre�x should have their names dumped in expanded or unexpanded form.

Chapter 3

The SchemaValidator and

SchemaType Classes

3.1 The SchemaValidator Class

The public and protected operations of the SchemaValidator class are
shown in Figure 3.1. First, I will discuss the public operations, and then
the protected one.

3.1.1 Public Operations

The overloaded wantDiagnostics() operation enables you to get and set
a boolean property, the default value of which is false. If you set this
to true, then detailed diagnostic messages will be printed to standard
output during calls to parseSchema() and validate(). These diagnostic
messages may be useful when debugging a schema.

The parseSchema() operation parses a schema de�nition and stores
it in an e�cient internal format. The schema can be speci�ed as an
array of strings plus the size of that array, or as a null-terminated array
of strings. The parseSchema() operation will throw an exception if the
parser encounters a problem, such as a syntax error, when parsing the
schema.

After you have created a SchemaValidator object and used it to parse
a schema, you can then call validate() to validate (a scope within) a
con�guration �le. If you want, you can call validate() repeatedly, per-
haps to validate multiple con�guration �les. The validate() operation

39

40 CHAPTER 3. THE SCHEMAVALIDATOR AND SCHEMATYPE CLASSES

Figure 3.1: The SchemaValidator class

// Access with #include <config4cpp/SchemaValidator.h>

class Configuration {

public:

enum Type {CFG_NO_VALUE = 0, // bit masks

CFG_STRING = 1, // 0001

CFG_LIST = 2, // 0010

CFG_SCOPE = 4, // 0100

CFG_VARIABLES = 3, // 0011 = STRING | LIST

CFG_SCOPE_AND_VARS = 7 // 0111 = STRING | LIST | SCOPE

};

...

};

class SchemaValidator {

public:

enum ForceMode {DO_NOT_FORCE, FORCE_OPTIONAL, FORCE_REQUIRED};

SchemaValidator();

void wantDiagnostics(bool value);

bool wantDiagnostics();

void parseSchema(const char ** schema, int schemaSize)

throw(ConfigurationException);

void parseSchema(const char ** nullTerminatedSchema)

throw(ConfigurationException);

void validate(

const Configuration * cfg,

const char * scope,

const char * localName,

bool recurseIntoSubscopes,

Configuration::Type typeMask,

ForceMode forceMode = DO_NOT_FORCE) const

throw(ConfigurationException);

void validate(

const Configuration * cfg,

const char * scope,

const char * localName,

ForceMode forceMode = DO_NOT_FORCE) const

throw(ConfigurationException);

protected:

void registerType(SchemaType * type) throw(ConfigurationException);

};

3.2. THE SCHEMATYPE CLASS 41

merges the scope and localName parameters to form the fully-scoped
name of the scope (within the cfg object) to be validated.

The recurseIntoSubscopes parameter speci�es whether validate()

should validate only entries in the scope, or recurse down into sub-scopes
to validate their entries too.

The typeMask parameter is a bit mask that speci�es which types of
entries should be validated. For example, CFG_VARIABLES speci�es that
variables (but not scopes) should be validated.

By default, validate() respects use of the @optional and @required

keywords in the schema. However, if you specify FORCE_OPTIONAL for the
forceMode parameter, then validate() will act as if all identi�ers in the
schema have the @optional keyword. Conversely, FORCE_REQUIRED makes
validate() act as if all identi�ers without an "uid-" pre�x in the schema
have the @required keyword.

There are two versions of the validate() operation. The version with
four parameters uses true for the recurseIntoSubscopes parameter and
CFG_SCOPE_AND_VARS for the typeMask parameter.

3.1.2 Using registerType() in a Subclass

Later, in Section 3.2, I will explain how you can implement new schema
types. If you implement new schema types, then you will need to write
a subclass of SchemaValidator to register those new schema types. Fig-
ure 3.2 illustrates how to do this.

Registration of new schema types is trivial: the constructor of the
subclass simply calls registerType() to register one instance of each of
the new schema types.

Once you have implemented the ExtendedSchemaValidator class to
register new schema types, your applications need only create an instance
of ExtendedSchemaValidator (instead of SchemaValidator) to be able to
make use of those new schema types.

3.2 The SchemaType Class

The SchemaValidator class perform very little of the validation work
itself. Instead, it delegates most of this work to other classes, each of
which is a subclass of SchemaType (shown in Figure 3.3). There is a
separate subclass of SchemaType for each schema type. For example, the
Con�g4Cpp library contains SchemaTypeBoolean, which implements the

42 CHAPTER 3. THE SCHEMAVALIDATOR AND SCHEMATYPE CLASSES

Figure 3.2: A subclass of SchemaValidator

#include <config4cpp/SchemaValidator.h>

using config4cpp::SchemaValidator;

class SchemaTypeDate { ... }; // Define a new schema type

class SchemaTypeHex { ... }; // Define a new schema type

class ExtendedSchemaValidator : public SchemaValidator

{

public:

ExtendedSchemaValidator()

{

registerType(new SchemaTypeDate());

registerType(new SchemaTypeHex());

}

};

boolean schema type, SchemaTypeInt, which implements the int schema
type, and so on.

3.2.1 Constructor and Public Accessors

When the constructor of a subclass of SchemaType calls its parent con-
structor, the parameters specify the name of the schema type, the name
of the class that implements it, and the con�guration entry's type, which
is one of: CFG_STRING, CFG_LIST or CFG_SCOPE. You can see an example
of this in Figure 3.4.

Parameter values passed to the parent constructor are made avail-
able via the typeName(), className() and cfgType() operations shown
in Figure 3.3.

The SchemaValidator class invokes registerType() to register an in-
stance of each of the prede�ned schema types and, as previously shown
in Figure 3.2, a subclass of SchemaValidator can invoke registerType()

to register instances of additional schema types.

3.2.2 The checkRule() Operation

The SchemaValidator class invokes the checkRule() operation of an ob-
ject representing a schema type when that type is encountered in a
schema rule. I will illustrate this through the schema shown in Fig-
ure 3.5.

3.2. THE SCHEMATYPE CLASS 43

Figure 3.3: The SchemaType class

// Access with #include <config4cpp/SchemaValidator.h>

// or #include <config4cpp/SchemaType.h>

class SchemaType {

public:

SchemaType(

const char * typeName,

const char * className,

Configuration::Type cfgType);

virtual ~SchemaType();

const char * typeName() const;

const char * className() const;

Configuration::Type cfgType() const;

protected:

virtual void checkRule(

const SchemaValidator * sv,

const Configuration * cfg,

const char * typeName,

const StringVector & typeArgs,

const char * rule) const

throw(ConfigurationException) = 0;

virtual void validate(

const SchemaValidator * sv,

const Configuration * cfg,

const char * scope,

const char * name,

const char * typeName,

const char * origTypeName,

const StringVector & typeArgs,

int indentLevel) const

throw(ConfigurationException);

virtual bool isA(

const SchemaValidator * sv,

const Configuration * cfg,

const char * value,

const char * typeName,

const StringVector & typeArgs,

int indentLevel,

StringBuffer & errSuffix) const;

... continued on the next page

44 CHAPTER 3. THE SCHEMAVALIDATOR AND SCHEMATYPE CLASSES

Figure 3.3 (continued): The SchemaType class

... continued from the previous page

SchemaType * findType(

const SchemaValidator * sv,

const char * name) const;

void callValidate(

const SchemaType * target,

const SchemaValidator * sv,

const Configuration * cfg,

const char * scope,

const char * name,

const char * typeName,

const char * origTypeName,

const StringVector & typeArgs,

int indentLevel) const

throw(ConfigurationException);

bool callIsA(

const SchemaType * target,

const SchemaValidator * sv,

const Configuration * cfg,

const char * value,

const char * typeName,

const StringVector & typeArgs,

int indentLevel,

StringBuffer & errSuffix) const;

};

Figure 3.4: Example constructor of a subclass of SchemaType

SchemaTypeInt::SchemaTypeInt()

: SchemaType("int", "config4cpp::SchemaTypeInt",

Configuration::CFG_STRING)

{

// Nothing else to do in the constructor

}

When parsing the �rst line of the schema, SchemaValidator invokes
checkRule() on the object representing the durationMilliseconds schema
type. When parsing the next line in the schema, the SchemaValidator

invokes checkRule() on the object representing the list schema type,
and so on.

Among the parameters passed to checkRule() is typeArgs (of type

3.2. THE SCHEMATYPE CLASS 45

Figure 3.5: Example schema

1 const char * schema[] = {

2 "timeout = durationMilliseconds",

3 "fonts = list[string]",

4 "background_colour = enum[grey, white, yellow]",

5 "log = scope",

6 "log.dir = string",

7 "@typedef logLevel = int[0,3]",

8 "log.level = logLevel"

9 };

StringVector), which contains the arguments, if any, for the type. This
parameter will be empty for the rules in lines 2, 5 and 6 of Figure 3.5.
For the rule in line 3, typeArgs will contain one string ("string"); and
for the rule in line 4, it will contain three strings ("grey", "white" and
"yellow"). You might think that typeArgs should be empty for the rule
in line 8. However, the logLevel type used in line 8 was de�ned in line 7
to be int[0,3]. Because of this, when checkRule() is called for the rule
in line 8, typeArgs will contain two strings ("0" and "3").

The implementation of checkRule() must determine whether the
strings in typeArgs are valid, and throw an exception containing a de-
scriptive error message if not. For example:

� The implementation of SchemaTypeInt::checkRule() throws an ex-
ception unless: (1) there are zero strings in typeArgs; or (2) there
are two strings in typeArgs, both strings can be parsed as integers,
and the �rst integer is smaller than or equal to the second integer.

� The implementation of SchemaTypeList::checkRule() throws an
exception unless there is exactly one string in typeArgs, and that
string is the name of a schema type whose con�guration entry's
type is CFG_STRING. This checkRule() operation invokes findType()
to search for the speci�ed schema type; findType() returns a nil
pointer if the type does not exist.

Deciding whether the typeArgs parameter contains acceptable strings
is the primary purpose of checkRule(). Most of the other parameters
are provided to help checkRule() make that decision and to format an
informative exception message if necessary.

One of the demonstration applications provided with Con�g4Cpp
is called extended-schema-validator. That demo contains a class called

46 CHAPTER 3. THE SCHEMAVALIDATOR AND SCHEMATYPE CLASSES

SchemaTypeHex that implements a hex (hexadecimal integer) schema type.
That class's implementation of checkRule() is shown in Figure 3.6. A
bold font indicates how the operation makes use of parameters.

Figure 3.6: Implementation of SchemaTypeHex::checkRule()

void SchemaTypeHex::checkRule(

const SchemaValidator * sv,

const Configuration * cfg,

const char * typeName,

const StringVector & typeArgs,

const char * rule) const throw(ConfigurationException)

{

StringBuffer msg;

int len;

int maxDigits;

len = typeArgs.length();

if (len == 0) {

return;

} else if (len > 1) {

msg << "schema error: the ’" << typeName << "’ type should "

<< "take either no arguments or 1 argument (denoting "

<< "max-digits) in rule ’" << rule << "’";

throw ConfigurationException(msg.c_str());

}

try {

maxDigits = cfg->stringToInt("", "", typeArgs[0]);

} catch(const ConfigurationException & ex) {

msg << "schema error: non-integer value for the ’max-digits’ "

<< "argument in rule ’" << rule << "’";

throw ConfigurationException(msg.c_str());

}

if (maxDigits < 1) {

msg << "schema error: the ’max-digits’ argument must be 1 or "

<< "greater in rule ’" << rule << "’";

throw ConfigurationException(msg.c_str());

}

}

The only parameter not used in the body of the operation is sv, which
is of type SchemaValidator. That parameter is used by the checkRule()

operation in the list, table and tuple types when invoking findType()

3.2. THE SCHEMATYPE CLASS 47

to determine if items in typeArgs are names of types.

3.2.3 The isA() and validate() Operations

Subclasses of SchemaType should implement the isA() and validate()

operations. However, the default implementation of isA() is suitable
for list-based types, and the default implementation of validate() is
suitable for string-based types. Because of this, a subclass of SchemaType
needs to implement only one of these two operations.

3.2.3.1 String-based Types: isA()

If you are providing schema support for a string-based type, then you
must implement the isA() operation. Among the parameters passed
to this operation is a string called value; the isA() operation should
return true if value can be parsed as the schema type. For example,
the SchemaTypeInt::isA() operation returns true for "42" and returns
false for "hello, world".

If isA() returns false, then the operation can optionally set the
errSuffix parameter (which is of type StringBuffer) to be a descriptive
message that explains why the string is not suitable. This message will
be appended to an exception message.

Figure 3.7 illustrates how isA() might be implemented for a schema
type that denotes hexadecimal integers. A bold font indicates how the
operation makes use of parameters. This implementation of isA() con-
tains two straightforward checks. First, it checks whether value consists
of hexadecimal digits. Second, if typeArgs speci�es a maximum number
of digits, then isA() checks if this limit has been exceeded.

3.2.3.2 List-based Types: validate()

Con�g4* has three built-in, list-based schema types: list, tuple and
table. Each of these schema types takes arguments, for example:

const char * schema[] = {

"@typedef money = units_with_float[\"£\", \"$\", \"€\"]",

"fonts = list[string]",

"point = tuple[float,x, float,y]",

"price_list = table[string,product, money,price]"

};

48 CHAPTER 3. THE SCHEMAVALIDATOR AND SCHEMATYPE CLASSES

Figure 3.7: Implementation of isA() for a hex type

bool SchemaTypeHex::isA(

const SchemaValidator * sv,

const Configuration * cfg,

const char * value,

const char * typeName,

const StringVector & typeArgs,

int indentLevel,

StringBuffer & errSuffix) const

{

if (!isHex(value)) {

errSuffix << "the value is not a hexadecimal number";

return false;

}

if (typeArgs.length() == 1) {

//--------

// Check if there are too many hex digits in the value

//--------

int maxDigits = cfg->stringToInt("", "", typeArgs[0]);

if (strlen(value) > maxDigits) {

errSuffix << "the value must not contain more than "

<< maxDigits << " digits";

return false;

}

}

return true;

}

bool SchemaTypeHex::isHex(const char * str)

{ ... } // implementation will be shown later in this chapter

Each of those list-based schema types implements validate() in a similar
way, so I will discuss only the implementation for the table schema type,
using the de�nition of price_list in the above example.

� A call of cfg->lookupList(scope, name, ...) is made to retrieve
the value of the list variable from the con�guration object.

� The typeArgs parameter contains all the arguments to the schema
type ("string", "product", "money" and "price" for the price_list
variable in the example). Those pairs of strings de�ne the types
and names of columns within the table. The validate() operation

3.3. ADDING UTILITY OPERATIONS TO A SCHEMA TYPE 49

checks that the length of the list is a multiple of the number of
columns in the table's de�nition.

� Finally, validate() iterates over all the items in the list. For each
item, validate() calls findType() for the item's column type (ob-
tained from typeArgs) to retrieve the item's schema type; it invokes
the isA() operation of that type, and throws an exception if isA()
returns false.

The invocation of isA() is not made directly. Rather, it is made
indirectly by invoking callIsA(), which is shown in Figure 3.3
on page 43. Doing this ensures that diagnostic messages can be
printed if the SchemaValidator was created with true speci�ed for
the wantDiagnostics constructor parameter.

If you want to implement schema support for a list-based type, then
you should implement the validate() operation in a manner similar to
that described above. I recommend that you examine the source code
of the SchemaTypeList, SchemaTypeTable or SchemaTypeTuple class for
concrete details.

3.3 Adding Utility Operations to a Schema

Type

The infrastructure within Con�g4Cpp to support a built-in data type is
split over three classes:

� The SchemaType<Type> class implements the schema validation in-
frastructure.

� The SchemaValidator class calls registerType() to register each
schema type.

� The Configuration class provides operations with names of the
form lookup<Type>(), is<Type>() and stringTo<Type>().

In this chapter, I have explained how you can provide schema valida-
tion support for a new type by writing a SchemaType<Type> class and
registering it in a subclass of SchemaValidator. However, I have not yet
explained how you can write a subclass of Configuration to implement
the lookup<Type>(), is<Type>() and stringTo<Type>() operations.

50 CHAPTER 3. THE SCHEMAVALIDATOR AND SCHEMATYPE CLASSES

The Configuration class is an abstract base class, and its static
create() operation creates an instance of a hidden, concrete subclass.
This enforces a separation between the public API and the implemen-
tation details of Con�g4*. Most of the time, this separation is ben-
e�cial. However, it has a drawback: you cannot write a subclass of
Configuration to add additional operations, such as lookup<Type>(),
is<Type>() and stringTo<Type>().

A good way to workaround this drawback is to de�ne the desired func-
tionality as static operations in the SchemaType<Type> class. For exam-
ple, if you are writing a class called SchemaTypeHex (for hexadecimal inte-
gers), then you can implement lookupHex(), isHex(), and stringToHex()

as static operations in the SchemaTypeHex class. This is illustrated in
Figure 3.8.

With this technique, application code can call cfg->lookup<Type>()
for built-in types, but must call SchemaType<Type>::lookup<Type>() for
other types. For example:

try {

logFile = cfg->lookupString(scope, "log.file");

timeout = cfg->lookupDurationMilliseconds(scope, "idle_timeout");

addr = SchemaTypeHex::lookupHex(cfg, scope, "base_address");

} catch(const ConfigurationException & ex) {

cerr << ex.c_str() << endl;

}

3.3. ADDING UTILITY OPERATIONS TO A SCHEMA TYPE 51

Figure 3.8: Utility operations in the SchemaTypeHex class

class SchemaTypeHex : public SchemaType

{

public:

SchemaTypeHex()

: SchemaType("hex", "SchemaTypeHex", Configuration::CFG_STRING)

{ }

virtual ~SchemaTypeHex()

static bool isHex(const char * str)

{

int i;

for (i = 0; str[i] != ’\0’; i++) {

if (!isxdigit(str[i])) { return false; }

}

return i > 0;

}

static int lookupHex(

const Configuration * cfg,

const char * scope,

const char * localName) throw(ConfigurationException)

{

const char * str = cfg->lookupString(scope, localName);

return stringToHex(cfg, scope, localName, str);

}

static int lookupHex(

const Configuration * cfg,

const char * scope,

const char * localName,

int defaultVal) throw(ConfigurationException)

{

if (cfg->type(scope, localName)

== Configuration::CFG_NO_VALUE)

{

return defaultVal;

}

const char * str = cfg->lookupString(scope, localName);

return stringToHex(cfg, scope, localName, str);

}

... continued on the next page

52 CHAPTER 3. THE SCHEMAVALIDATOR AND SCHEMATYPE CLASSES

Figure 3.8 (continued): Utility operations in the SchemaTypeHex class

... continued from the previous page

static int stringToHex(

const Configuration * cfg,

const char * scope,

const char * localName,

const char * str,

const char * typeName) throw(ConfigurationException)

{

unsigned int value;

StringBuffer msg;

StringBuffer fullyScopedName;

int status = sscanf(str, "%x", &value);

if (status != 1) {

cfg->mergeNames(scope, localName, fullyScopedName);

msg << cfg->fileName() << ": bad " << typeName

<< " value (’" << str << "’) specified for ’"

<< fullyScopedName;

throw ConfigurationException(msg.c_str());

}

return (int)value;

}

protected:

... // checkRule() and isA() were shown earlier in this chapter

}

	1 Introduction
	1.1 Purpose of this Manual
	1.2 Namespace
	1.3 Memory management
	1.4 Portability
	1.5 Error Reporting
	1.6 Specifying Scoped Names
	1.7 Support Classes
	1.7.1 The StringBuffer Class
	1.7.2 The StringVector Class

	2 The Configuration Class
	2.1 The ConfigurationException Class
	2.2 The create() and destroy() Operations
	2.3 Utility Operations
	2.4 The parse(), fileName() and empty() Operations
	2.4.1 Parsing a File
	2.4.2 Parsing the Output of a Command
	2.4.3 Parsing a String
	2.4.4 The Simplified Version of parse()
	2.4.5 Parsing Multiple Files and the empty() Operation

	2.5 Insertion and Removal Operations
	2.6 The lookup<Type>() Operations
	2.6.1 Lookup Operations for Enumerated Types
	2.6.2 Lookup Operations for Unit-based Types

	2.7 The type() and is<Type>() Operations
	2.8 The stringTo<Type>() Operations
	2.9 The List Operations
	2.10 Operations for Fallback Configuration
	2.11 Operations for Security Configuration
	2.12 Operations for the "uid-" Prefix
	2.13 The dump() Operation

	3 The SchemaValidator and SchemaType Classes
	3.1 The SchemaValidator Class
	3.1.1 Public Operations
	3.1.2 Using registerType() in a Subclass

	3.2 The SchemaType Class
	3.2.1 Constructor and Public Accessors
	3.2.2 The checkRule() Operation
	3.2.3 The isA() and validate() Operations
	3.2.3.1 String-based Types: isA()
	3.2.3.2 List-based Types: validate()

	3.3 Adding Utility Operations to a Schema Type

